It is of vital importance, before attempting to operate your engine, to read the general ‘SAFETY INSTRUCTIONS AND WARNINGS’ section on pages 2-4 of this booklet and to strictly adhere to the advice contained therein.

- Also, please study the entire contents of this instruction manual, so as to familiarize yourself with the controls and other features of the engine.
- Keep these instructions in a safe place so that you may readily refer to them whenever necessary.
- It is suggested that any instructions supplied with the aircraft, radio control equipment, etc., are accessible for checking at the same time.
SAFETY INSTRUCTIONS AND WARNINGS ABOUT YOUR O.S. ENGINE

Remember that your engine is not a "toy", but a highly efficient internal-combustion machine whose power is capable of harming you, or others, if it is misused or abused. As owner, you, alone, are responsible for the safe operation of your engine, so act with discretion and care at all times.

If at some future date, your O.S. engine is acquired by another person, we would respectfully request that these instructions are also passed on to its new owner.

The advice which follows is grouped under two headings according to the degree of damage or danger which might arise through misuse or neglect.

WARNINGs

These cover events which might involve serious (in extreme circumstances, even fatal) injury.

NOTES

These cover the many other possibilities, generally less obvious sources of danger, but which, under certain circumstances, may also cause damage or injury.

WARNINGs

- Never touch, or allow any object to come into contact with, the rotating propeller and do not touch over the engine when it is running.
- A weakened or loose propeller may disintegrate or be thrown off and, since propeller tip speeds with powerful engines may exceed 600 feet (180 metres) per second, it will be understood that such a failure could result in serious injury, (see ‘NOTES’ section relating to propeller safety).
- Model engine fuel is poisonous. Do not allow it to come into contact with the eyes or mouth. Always store it in a clearly marked container and out of the reach of children.
- Model engine fuel is also highly flammable. Keep it away from an open flame, excessive heat, sources of sparks, or anything else which might ignite it. Do not smoke or allow anyone else to smoke, near to it.
- Never operate your engine in an enclosed space. Model engines, like automobile engines, exhaust deadly carbon-monoxide. Run your engine only in an open area.
- Model engines generate considerable heat. Do not touch any part of your engine until it has cooled. Contact with the muffler(silencer), cylinder head or exhaust header pipe, in particular, may result in a serious burn.

NOTES

- This engine was designed for model aircraft. Do not attempt to use it for any other purpose.
- Mount the engine in your model securely, following the manufacturers' recommendations, using appropriate screws and locknuts.
- If you remove the glowplug from the engine and check its condition by connecting the battery leads to it, do not hold the plug with bare fingers. Use an appropriate tool or a folded piece of cloth.
- Install a top-quality propeller of the diameter and pitch specified for the engine and aircraft. Locate the propeller on the shaft so that the curved face of the blades faces forward-i.e. in the direction of flight. Firmly tighten the propeller nut, using the correct size wrench.
- Always check the tightness of the propeller nut and retighten it, if necessary, before restarting the engine, particularly in the case of four-stroke-cycle engines. If a safety locknut assembly is provided with your engine, always use it. This will prevent the propeller from flying off in the event of a "backfire", even if it loosens. Also, check the tightness of all the screws and nuts before restarting the engine.
- If you install a spinner, make sure that it is a precision made product and that the slots for the propeller blades do not cut into the blade roots and weaken them.
- Discard any propeller which has become split, cracked, nicked or otherwise rendered unsafe. Never attempt to repair such a propeller: destroy it. Do not modify a propeller in any way, unless you are highly experienced in tuning propellers for specialized competition work such as pylon-racing.
- Use an electric starter for this engine. The wearing of safety glasses is also strongly recommended.
Take care that the glow plug clip or battery leads do not come into contact with the propeller. Also check the linkage to the throttle arm. A disconnected linkage could also foul the propeller.

After starting the engine, carry out any needle-valve readjustments from a safe position behind the rotating propeller. Stop the engine before attempting to make other adjustments to the carburetor.

Adjust the throttle linkage so that the engine stops when the throttle stick and trim lever on the transmitter are fully retarded. Alternatively, the engine may be stopped by cutting off the fuel supply. Never try to stop the engine physically.

Take care that loose clothing (ties, shirt sleeves, scarves, etc.) do not come into contact with the propeller. Do not carry loose objects (such as pencils, screwdrivers, etc.) in a shirt pocket from where they could fall through the propeller arc.

Do not start your engine in an area containing loose gravel or sand. The propeller may throw such material in your face and eyes and cause injury.

For their safety, keep all onlookers (especially small children) well back (at least 20 feet or 6 meters) when preparing your model for flight. If you have to carry the model to the take-off point with the engine running, be especially cautious. Keep the propeller pointed away from you and walk well clear of spectators.

Warning! Immediately after a glowplug-ignition engine has been run and is still warm, conditions sometimes exist whereby it is just possible for the engine to abruptly restart if the propeller is casually flipped over compression WITHOUT the glowplug battery being reconnected. Remember this if you wish to avoid the risk of a painfully rapped knuckle!

NOTES WHEN APPLYING AN ELECTRIC STARTER

Do not over-prime. This could cause a hydraulic lock and damage the engine on application of the electric starter.

If over-primed, remove glowplug, close needle-valve and apply starter to pump out surplus fuel. Cover the head with a rag to prevent pumped out fuel from getting into your eyes.
The FR7-420 (Sirius7) is a seven-cylinder radial overhead-valve four-stroke-cycle engine of 70cc displacement. The engine maintains the same features of stress free starting, super smooth idling and high torque power which is always the hallmark of O.S. large size multi-cylinder engines. With its finely detailed design and outstanding scale appearance and sound, the engine’s quality is second to none.

STANDARD ACCESSORIES

- Glow Plug Type F (installed on the engine)
- Plug Cable Set
 - Plug Cable (7pcs.)
 - Plug Terminal (7pcs.) (w/silicone tube)
- Lead for ground Ø5 (1pc.)
- Plug Cable Set
 - Plug Cable (7pcs.)
 - Plug Terminal (7pcs.) (w/silicone tube)
- Valve adjusting tool kit
 - Feeler gauge 0.04mm
 - Feeler gauge 0.1mm
 - Hex. key 1.5mm
 - Wrench 5mm
- Decal
- Instruction Manual
- Aluminum Case

ENGINE PARTS NAME

- No.1 Cylinder
- No.2 Cylinder
- No.3 Cylinder
- No.4 Cylinder
- No.5 Cylinder
- No.6 Cylinder
- No.7 Cylinder
- Front Housing
- Crankcase
- Propeller Washer
- Propeller Nut
- Lock Nut
It is essential that the firewall is strong and rigid (e.g. at least 15mm thick) and firmly integrated with the structure of the aircraft.

It is suggested to install the engine upright.

It is suggested to use Lock Washers (available as an optional extra) with engine installing screws or apply LOCTITE to the screws to prevent them from loosening.

 Needle-valve extension
The needle-valve supplied with this engine is designed to incorporate an extension so that, when the engine is enclosed within the fuselage, the needle-valve may be adjusted from the outside. For this purpose, a Needle Valve Extension Cable Set is supplied with the engine.
If a longer extension is required, cut a commercially available rod to the required length, bend one end to an L shape, insert it into needle's center hole and secure it by tightening the set-screw in the needle-valve knob with 1.5mm Allen key.

Note:
Carburetor installing direction cannot be changed and the needle direction cannot be changed. Avoid the place near the exhaust pipe when fixing the extension cable.
Exhaust pipe

- Exhaust pipe becomes very hot while running and right after running, make sure it does not touch the model and never allow hand and body to touch it.
- Check the tightness of locknuts while the engine is warm after the first flight.

Carburetor cleanliness

- It is recommended that the fuel is passed through a filter when the tank is filled and that a good in-line filter is installed between the fuel tank and carburetor.
- Occasionally remove the needle-valve holder from the carburetor and rinse out the locations shown below with methanol or fuel. Be careful not to lose the gasket when removing the needle-valve holder from the carburetor.

FUEL TANK & LINES

- Make sure that the tank is well rinsed out with methanol or glow fuel before installation and that the pickup weight is well clear of the bottom of the tank when held vertically. A 700cc tank will allow approx. 10 minutes medium speed flight.
- Be sure to follow the instructions concerning the relationship between fuel tank and carburetor position, or the expected stable idle running will not be obtained even with adequate carburetor adjustment.
- For plumbing, use heavy duty silicone tube of 2.5mm inner dia and 5mm outer dia.

Locate the fuel tank as close as possible to the carburetor, or the fuel level difference will affect the engine running when the model is upright or inverted.

Set the fuel tank position so that the carburetor center line is 1/3 lower from the tank top when the model is placed horizontal.
GLOWPLUG

Since the compatibility of the glowplug and fuel may have a marked effect on performance and reliability, it is suggested to use the O.S. Type F plug when it is necessary to replace. Carefully install plug finger-tight, before final tightening with the correct size plug wrench.

The engine is installed with the O.S. Type F plugs.

The role of the glowplug

With a glowplug engine, ignition is initiated by the application of a 1.5-volt power source. When the battery is disconnected, the heat retained within the combustion chamber remains sufficient to keep the plug filament glowing, thereby continuing to keep the engine running. Ignition timing is 'automatic': under reduced load, allowing higher rpm, the plug becomes hotter and, appropriately, fires the fuel/air charge earlier; conversely, at reduced rpm, the plug become cooler and ignition is retarded.

Glowplug life

Particularly in the case of very high performance engines, glowplugs must be regarded as expendable items. However, plug life can be extended and engine performance maintained by careful use, i.e.:

- Install a plug suitable for the engine.
- Use fuel containing a moderate percentage of nitromethane.
- Do not run the engine too lean and do not leave the battery connected while adjusting the needle.

When to replace the glowplug

Apart from when actually burned out, a plug may need to be replaced because it no longer delivers its best performance, such as when:

- Filament surface has roughened and turned white.
- Filament coil has become distorted.
- Foreign matter has adhered to filament or plug body has corroded.
- Engine tends to cut out when idling.
- Starting qualities deteriorate.

CARBURETOR 80T PARTS NAMES

The carburetor Mixture Control Valve is set at basic position (a little on the rich side) at the factory. However, minor readjustment will be required for a fuel used, atmospheric conditions and a model. When a good result is not obtained with the factory setting, readjust it according to the MIXTURE CONTROL VALVE ADJUSTMENT section. Please note during a running-in period flights should be made with a slightly rich needle setting. Therefore, during a running-in period proper carburetor responses will not be obtained. Adjust it for optimum position after the running-in is completed.

MIXTURE CONTROLS

- The Needle Valve
 When set to produce maximum power at full throttle, this establishes the basic fuel/air mixture strength. The correct mixture is then maintained by the carburetor's built-in automatic mixture control system to cover the engine's requirements at reduced throttle settings.

- The Mixture Control Valve
 This meters fuel flow at part-throttle and idling speeds to ensure reliable operation as the throttle is opened and closed. The Mixture Control Valve is factory set for the approximate best result. First run the engine as received and readjust the Mixture Control Screw only if necessary.

THROTTLE LINKAGE

Before connecting the throttle to its servo, make sure that the throttle arm and linkage safely clear any adjacent part of the airframe structure, etc., as the throttle is opened and closed. Connect the linkage so that the throttle is fully closed when the transmitter throttle stick and its trim lever are at their lowest settings and fully open when the throttle stick is in its fully-open position. Carefully align the appropriate holes in the throttle arm and servo horn so that they move symmetrically and smoothly through their full travel.
The choice of propeller depends on the design and weight of the aircraft and on the type of flying in which you will be engaged. Determine the best size and type after practical experimentation. As a starting point, refer to the props listed in the accompanying table. Slightly larger, or even slightly smaller, props than those shown in the table may be used, but remember that propeller noise will increase if blade tip velocity is raised, due to higher rpm or if a larger-diameter / lower-pitch prop is used.

Warning:

Make sure that the propeller is well balanced. An unbalanced propeller and / or spinner can cause serious vibration which may weaken parts of the airframe or affect the safety of the radio-control system.

DO NOT forget the **WARNINGS** and **NOTES** on propeller and spinner safety given on pages 2, 3 and 4.

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (DxP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport / Scale</td>
<td>22x10-12, 23x8-12,</td>
</tr>
<tr>
<td></td>
<td>24x8-12, 26x8</td>
</tr>
</tbody>
</table>

3. **Add** the special tapered and slotted locknut and secure with a 14mm wrench while holding the prop nut with the 17mm wrench. (not supplied).

NOTE:

Make a habit of always checking the tightness of the propeller before starting the engine. Remember that, especially with wooden propellers, there is a tendency for the material to shrink, or for it to be reduced by the serrated face of the drive hub. Retighten the propeller nut if necessary after loosening the Locknut. The locknut should be tightened firmly after retightening the propeller nut.

SPINNER

The engine is intended to be started with an electric starter, the addition of a spinner assembly for centering the starter sleeve is desirable. Special propeller locknut sets are available for use with spinners. Use a good quality well balanced spinner, enclosing the propeller boss. Make sure that it is of precision-made and sturdy construction so that the spinner shell cannot loosen when the starter is used. Make sure the spinner notches do not interfere with the propeller. If they do, cut the notches to clear the blades.

PROPELLER & SPINNER ATTACHMENT

There is a risk, particularly with powerful four-stroke engines, of the propeller flying off if the prop nut loosens due to detonation ("knocking") in the combustion chamber when the engine is operated too lean, or under an excessively heavy load.

Obviously, this can be very hazardous. To eliminate such dangers, the O.S. Safety Locknut Assembly was devised. Install this as follows:

1. Ream the propeller shaft hole to 9.7mm bore with an appropriate reamer, checking that the hole is exactly centered.

2. Install the prop to the engine shaft, followed by the retaining washer and prop nut and tighten firmly with a 17mm wrench. (not supplied).
GLOWPLUG HEATING

Glowplug battery
- The engine uses seven plugs (O.S. Type F).
 - It is suggested to use a commercially available glowplug heater intended for multi-cylinder engines. This enables the glowplug heat to be turned ON and OFF at the transmitter and also apply heat at idle. A pulse type that heats the plugs with lower current drain is suggested.
- Since the required consumption current is 7 times more than that for a single cylinder, a 1.2V, 20A capacity battery is required.

Glowplug leads
- Make sure that no part of the wiring touches any part of the engine, or the wire covering may be melted which causes short-circuit and fire.
- Insert each plug terminal on the plug until you feel two “clicks”.
- Make sure that the plug terminals do not come off before heating the plugs.
- When the plug terminals come off while running or you feel contact is loose, it is suggested to replace the plug terminals.
- Be sure to install insulating covering (5 O.D., 3 I.D., 12 long silicone tubing) when replacing the plug terminals.

FUEL AND LUBRICATION

Fuel
- Suitable fuel for this engine is a methanol based fuel containing 5–8% nitromethane and 8–10% lubricant. It is suggested to dilute commercially available 15% nitromethane and 18% lubricant fuel with methanol half-and-half to make a 7.5% nitromethane and 9% lubricant fuel.
- When you blend a fuel by yourself, use only good quality methanol, nitromethane and lubricant. When it is difficult to judge the needle adjustment due to propeller size and the fuel used, it is suggested to install a collector ring (optional extra) and apply a muffler pressurized fuel feed system. Also, installation of the carburetor insert supplied with the engine (refer to Page 23) makes it easier to judge the needle adjustment reaction, while power drops a little.
- When a commercially available 15% nitromethane and 18% lubricant fuel is used, it is suggested to install the carburetor insert and preferably apply muffler pressurized fuel feed system.

Note:
Never use a fuel containing more than 15% nitromethane, or stable performance will not be obtained and the tendency for rust will be increased.
Reminder!

Model engine fuel is poisonous. Do not allow it to come into contact with the eyes or mouth. Always store it in a clearly marked container and out of the reach of children.

Model engine fuel is also highly flammable. Keep it away from open flame, excessive heat, sources of sparks, or anything else which might ignite it. Do not smoke, or allow anyone else to smoke, near to it.

Lubrication

- The crankcase breather hole is located at the back of the engine and is fitted with a brass nipple. Fit a length of silicone tubing of approx. 2.5mm I.D. to this nipple to conduct away the small amount of oil that escapes through the breather.

- Make a habit of draining out the excess oil in the crankcase at the end of each flying session. Leaving contaminated oil in the crankcase for a long time will cause rust. Also, residual castor oil will tend to solidify and lock the engine. Inject corrosion-inhibiting oil into the crankcase to neutralize the effects of any remaining contaminants.

Precautions

For safety, please observe the following instructions before starting the engine.

- Since this is a large engine of 70cc (total displacement), it generates huge thrust with full throttle. Be sure to hold the model with two adults and never allow any part of the body to be in front of the rotating propeller.

- Start the engine by turning the propeller counterclockwise (i.e. normal running direction).

- Do not start the engine with the throttle fully opened, otherwise the model will tend to move forward suddenly due to the strong thrust of the propeller. Hold both wings of the model when starting the engine.

- Do not carry out carburetor adjustments (except needle-valve adjustment) while engine is running.

- Use a high-torque electric starter.

Starting procedure is as follows:

1. Open the needle-valve 2.5 turns from the fully closed position.

2. Make sure that glowplugs are not connected to the battery. Do not heat the glowplugs while priming.

3. Open the throttle fully and apply an electric starter for 5–6 seconds to prime the engine.

4. Set the throttle valve approximately 1/4 open from the fully closed position.
5. Starting with an electric starter.
 - Make sure that the direction of rotation of the starter is correct.
 - Connect the glowplug battery.
 - Apply the electric starter.

6. When the engine starts, open the throttle valve fully and keep it running initially (approx. 10 seconds), with original needle-valve setting.

7. Make sure that all seven cylinders are firing
 - The engine is running properly if white smoke is emitted through all seven exhaust pipes. A slight spray of fuel will be discharged through the exhaust pipe of any cylinder that is not firing.
 - If a cylinder ceases firing, reduce the throttle setting to approximately 1/4 open from the fully closed position and re-connect the glowplug battery. The rpm will increase when all cylinders are firing steadily.
 - With a propeller which the engine turns approx. 6,000rpm with full throttle, one misfiring cylinder will drop approx. 500rpm and two misfiring cylinders will drop approx. 1,000rpm.

8. Now disconnect the glowplug battery.

9. Adjust the needle-valve
 - With fully throttle, close the needle-valve gradually to increase the engine rpm. It is suggested to use a tachometer.
 - Abrupt adjustment of the needle-valve may cause the engine to stop, especially when it is new and insufficiently run-in.
 - As the speed of the engine does not instantly change with needle-valve readjustment, small movements, with pauses between, are necessary to arrive at the optimum setting.

How to stop the engine

Pull down the throttle lever and trim lever on the transmitter fully.

Note:
Make sure that the throttle linkage is made so that the throttle is fully closed when the throttle lever as well as trim lever on the transmitter are fully pulled down.

Re-starting the engine when warm

To re-start the engine when warm, simply re-energise the plugs and reapply the starter with the throttle in the idling position. If the engine does not start, disconnect the battery from the glowplugs and re-prime. Initially, the high temperature inside the combustion chambers may turn the liquid fuel into gas and emit it through the exhaust pipes. Allow the engine to cool and then repeat the priming procedure once or twice.
Obtain an 22x10 or 23x8 propeller for running-in.

1. Running-in on the ground
 - Start the engine
 - Set the needle-valve 200-300 r.p.m. lower than maximum r.p.m. setting and run approx. 10 seconds. (It is suggested to use a tachometer.)
 - Open the needle-valve approx. 200 r.p.m. lower than above setting and run approx. 20 seconds.

 Repeat above procedure, i.e., richening and leaning the mixture until the engine has approx. 10 minutes of running time.

 NOTE:
 - Keep the throttle fully open, using only the needle-valve to change r.p.m. Prolonged running-in on the ground is not suggested because the purpose is just initial running-in to increase engine temperature gradually close to that of maximum r.p.m.

2. Running-in in the air
 - Start the engine
 - Fly the model. Set the needle-valve approx. 45° open from optimum position (approx. 45° open from maximum r.p.m.).
 - NOTE: Avoid prolonged heavy load flight.

 With each successive flight, close the needle-valve slightly, until, at the end of 10 flights, the needle-valve is set for optimum position.

 Finish running-in.
 - The carburetor can now be adjusted for optimum throttle performance following the instructions given in the next section.

THROTTLE VALVE ADJUSTMENT

- Needle-valve adjustment
 Adjust the needle-valve following the instructions given in STARTING section.

- Mixture control valve adjustment
 The carburetor of your engine has been factory set for the approximate best result with the fuel tank located in the normal position (i.e., close to the back of the engine and where the level of the needle-valve is at 1/3 height of the tank, refer to Page 11), but the setting may, in some cases, vary slightly in accordance with fuel and climatic conditions.

- Installation of the carburetor insert
 - Note that a fuel containing higher nitromethane and lubricant makes it difficult to judge reactions when opening and closing the needle, and shortens stable idle running time.
 - Never use a fuel containing more than 15% nitromethane, or correct carburetor adjustments cannot be done and the tendency for rust will increase.

 After running-in is completed and the needle-valve is set at optimum position (approx. 45° open from maximum r.p.m. position), check the idle speed and adjust only when necessary.

 An approximate 1,500 rpm idle speed is possible. However, it is suggested to set the speed higher than 1,800 rpm for more idle reliability.
Adjusting the Mixture Control Valve

1. If the engine hesitates, pulling out a good deal of smoke, before picking up to full speed, it is probable that the idle mixture is too lean. Changing the make of glowplug or fuel may sometimes require re-adjustment of carburetor throttle.

2. Alternatively, if the engine stops, with smoking or picking up to full speed, it is probable that the idle mixture is too rich. In this case, it will be necessary to turn the Mixture Control Valve clockwise approximately one turn (30°).

3. Thirdly, if the engine appears to run with a reduced power, it is probable that one or more of the cylinders has ceased firing. You may detect this by the difference in exhaust note. In the case of the idle mixture being too low, re-set the idle speed, then set the Mixture Control Valve clockwise about 1/12 turn (30°).

REALIGNMENT OF MIXTURE CONTROL VALVE

In the course of making carburetor adjustments, it is just possible that the Mixture Control Valve may be inadvertently screwed in or out too far, and thereby moved beyond its effective adjustment range.

To correct this, unscrew the Mixture Control Valve until its slotted head is flush with the carburetor. This is the same position after running two turns.

NOTE:

- As this is a seven-cylinder four-stroke-cycle engine, seven firings take place every two complete revolutions. Therefore, at first you may have an impression that the engine is stopping at higher r.p.m. than actual running r.p.m. with a tachometer. It is recommended to check the engine r.p.m. with a tachometer.

- Changing the make of glowplug or fuel may sometimes require re-adjustment of carburetor throttle.

Attention: Do not leave the battery connected while adjusting the carburetor.
Checking before flight

- Make sure that all seven cylinders are firing.
- Sound at full throttle changes when one or two cylinders are not firing. With a propeller which the engine runs approx. 6,000rpm with full throttle, one misfiring cylinder will drop approx. 500rpm and two misfiring cylinders will drop approx. 1,000rpm.

- Make sure that engine runs steadily at idle speed.
- Make sure that engine is fully warmed up.
- It is necessary to warm up the engine as with a full-size aircraft or automobile. Do not attempt to take-off immediately after the engine has been started. Allow the engine to run at full throttle for at least 10 seconds before releasing the model.

Care and Maintenance

Please pay attention to the matters described below to ensure that your engine serves you well in regard to performance, reliability and long life.

- As previously mentioned, it is vitally important to avoid operating the engine in conditions where dust, disturbed by the propeller, may be deposited on the engine and enter its working parts.
- Remember to keep your fuel container closed to prevent foreign matter from contaminating the fuel.

Install a fuel filter to prevent dirt and dust in the fuel container from entering the fuel tank. O.S. Super Filters (L) is available as an optional extra.

Install an in-line fuel filter between the tank and carburetor to prevent foreign matter in the tank from entering the carburetor.

Clean these filters periodically.

If these precautions are neglected, restriction of fuel flow may cause the engine to cut out, or the fuel/air mixture to become too lean causing the engine to overheat.

The use of modern high-performance alcohol based model engine fuels, while promoting cooler running, improved anti-detonation combustion and increased power, have the disadvantage of causing corrosion due to the acid by-products of combustion. The use of nitromethane in the fuel can also contribute to the problem.

Do not close the needle-valve and mixture control valve too far as this will cause a lean setting and over heating of the engine. This can, in turn, create nitromethane oxide leading to internal rusting of the engine. Always adjust the needle valve slightly on the rich side of peak rpm.

Do not leave unused fuel in the engine at the conclusion of a day’s flying. Accepted practice is to cut off the fuel supply while the engine is still running at full throttle, then expel as much fuel residue as possible by turning the engine over 20-30 seconds with the electric starter. Finally, inject some after-run oil through the glowplug hole and turn the engine over several times with the electric starter.

When the engine is not to be used for some months (for example, as between flying seasons), a worthwhile precaution is to remove it from the airframe and, after washing off the exterior with alcohol (not gasoline nor kerosene), remove carefully the carburetor with intake pipe, glow plug and all silicone tubing and put them safely aside. Then, immerse the engine in a container of alcohol. Rotate the crankshaft while the engine is immersed. If foreign matter is visible in the alcohol, rinse the engine again in clean alcohol. Finally, shake off and dry the alcohol and inject some after-run oil in the glowplug hole and rotate the crankshaft several times by hand. Reinstall the carburetor with intake pipe and glowplug on the engine and keep it in a dry place after putting in a vinyl bag.
ALL O.S. four-stroke engines have their valve (tappet) clearances correctly set before they leave the factory. However, if, after many hours of running time have been logged, a loss of power is detected, or if the engine has to be disassembled or repaired as a result of an accident, valve clearances should be checked and readjusted, as necessary, with the aid of the O.S. Valve Adjusting Tool Kit.

Note:
Valve clearances of all O.S. four-stroke-cycle engines must be checked and reset ONLY WHEN THE ENGINE IS COLD. Procedure is as follows:

(I)
1. Remove all the glowplugs except the one installed in the cylinder that you want to check.

Note:
Each glowplug should be re-installed in to the original cylinder. You may start to check and adjust with any cylinder.

2. Turn the propeller counter-clockwise until compression is first felt, then turn it further a quarter turn. At this point, both valves should be closed.

3. The standard valve clearance, on both inlet and exhaust valves, is between 0.04mm and 0.1mm (0.0015-0.004 inch), measured between valve stem and rocker arm. Use the 0.04mm and 0.1mm feeler gauges to check clearances. (See Fig.1)

Note:
If the gap is found to be less than 0.04mm, it is not necessary to readjust the clearance if the engine has good compression and starts easily. Equally, if the gap exceeds 0.1mm but is not more than 0.14mm (i.e. the thickness of both feeler gauges inserted together), it is not necessary to readjust the clearance if the engine runs satisfactorily.

(II)
If a clearance is found to be outside either of these limits, it should be reset as follows.

1. Carefully loosen the locknut on rocker-arm 1/4-1/2 turn with 5mm wrench. (Fig.2)

2. Turn adjusting-screw approx. 1/2 turn counter-clockwise to open gap, using appropriate tool-i.e. Allen hex key. (Fig.3)

3. Insert 0.04mm feeler gauge between valve stem and rocker-arm and gently turn adjusting screw clockwise until it stops. (Fig.4)

4. Re-tighten locknut while holding adjusting screw stationary. (Fig.5)

5. Remove 0.04mm feeler, recheck gap as explained in the previous page.

6. If clearance is correct, loosen the locknut on the other rocker-arm and repeat steps 1 to 5 above.

Remember:
Excessive valve clearance will cause loss of power, due to valve(s) not opening sufficiently. On the other hand, a total loss of clearance may cause difficult starting due to valves not closing properly, resulting in loss of compression.

Note:
The camshaft rotates one turn with every eight propeller turns and has four projections on the profile. After adjustment is completed, turn the propeller eight turns to make sure you feel 4 times normal compression.
ENGINE EXPLODED VIEW & PARTS LIST

CAP SCREW SETS (10pcs./sets)

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Size</th>
<th>Code No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>79871100</td>
<td>M5x25</td>
<td>79871090</td>
<td>M3x8</td>
</tr>
<tr>
<td>79871110</td>
<td>M3x8</td>
<td>79871415</td>
<td>M4x15</td>
</tr>
<tr>
<td>79871060</td>
<td>M3x8</td>
<td>79871425</td>
<td>M4x25</td>
</tr>
</tbody>
</table>

CAP SCREW SETS

- Type of screw: C..Cap Screw N..Round Head Screw

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47104200</td>
<td>Rocker Cover</td>
</tr>
<tr>
<td>2</td>
<td>47161100</td>
<td>Rocker Arm</td>
</tr>
<tr>
<td>3</td>
<td>47062102</td>
<td>Tappet Adjusting Screw</td>
</tr>
<tr>
<td>4</td>
<td>47161120</td>
<td>Rocker Arm Thrust Washer (2pcs.)</td>
</tr>
<tr>
<td>5</td>
<td>47161500</td>
<td>Rocker Arm Shaft</td>
</tr>
<tr>
<td>6</td>
<td>47104000</td>
<td>Cylinder Head (W/Valve Assembly)</td>
</tr>
<tr>
<td>6-1</td>
<td>47104100</td>
<td>Cylinder Head</td>
</tr>
<tr>
<td>6-2</td>
<td>44851000</td>
<td>Valve (1pcs.)</td>
</tr>
<tr>
<td>6-3</td>
<td>45960210</td>
<td>Valve Spring (1pc.)</td>
</tr>
<tr>
<td>6-4</td>
<td>45960310</td>
<td>Valve Spring Retainer (1pc.)</td>
</tr>
<tr>
<td>6-5</td>
<td>45960400</td>
<td>Cotter Pin (2pcs.)</td>
</tr>
<tr>
<td>7</td>
<td>47589900</td>
<td>Exhaust Pipe Assembly</td>
</tr>
<tr>
<td>7-1</td>
<td>47589100</td>
<td>Exhaust Pipe</td>
</tr>
<tr>
<td>7-2</td>
<td>47589200</td>
<td>Exhaust Pipe Lock Nut</td>
</tr>
<tr>
<td>8</td>
<td>47114010</td>
<td>Head Gasket</td>
</tr>
<tr>
<td>9</td>
<td>47030100</td>
<td>Cylinder Liner</td>
</tr>
<tr>
<td>10</td>
<td>47033000</td>
<td>Cylinder Jacket</td>
</tr>
<tr>
<td>11</td>
<td>44603400</td>
<td>Piston Ring</td>
</tr>
<tr>
<td>12</td>
<td>45063200</td>
<td>Piston</td>
</tr>
<tr>
<td>13</td>
<td>45060000</td>
<td>Piston Pin</td>
</tr>
<tr>
<td>14</td>
<td>29310100</td>
<td>Propeller Loctnut Set</td>
</tr>
<tr>
<td>15</td>
<td>47108000</td>
<td>Drive Hub</td>
</tr>
<tr>
<td>15-1</td>
<td>29028000</td>
<td>Woodruff Key</td>
</tr>
<tr>
<td>16</td>
<td>29031009</td>
<td>Ball Bearing (Front)</td>
</tr>
<tr>
<td>17</td>
<td>47101600</td>
<td>Front Housing</td>
</tr>
<tr>
<td>18</td>
<td>47164000</td>
<td>Cam Follower (2pcs.)</td>
</tr>
<tr>
<td>19</td>
<td>47066000</td>
<td>Push Rod Set (S&L 1piece Each)</td>
</tr>
<tr>
<td>20</td>
<td>47166100</td>
<td>Push Rod Cover Set (S&L 1piece Each)</td>
</tr>
<tr>
<td>20-1</td>
<td>24881824</td>
<td>"O" Ring (2pcs.)</td>
</tr>
<tr>
<td>20-2</td>
<td>47166210</td>
<td>"O" Ring (2pcs.)</td>
</tr>
<tr>
<td>21</td>
<td>47031000</td>
<td>Reduction Gear Bearing (Front)</td>
</tr>
<tr>
<td>22</td>
<td>47162700</td>
<td>Reduction Gear</td>
</tr>
<tr>
<td>23</td>
<td>47131000</td>
<td>Reduction Gear Bearing (Rear)</td>
</tr>
<tr>
<td>24</td>
<td>47101610</td>
<td>Front Plate</td>
</tr>
<tr>
<td>25</td>
<td>47101100</td>
<td>Crankcase Locating Pin</td>
</tr>
<tr>
<td>26</td>
<td>47101000</td>
<td>Crankcase</td>
</tr>
<tr>
<td>27</td>
<td>47102100</td>
<td>Crankshaft Spacer</td>
</tr>
<tr>
<td>28</td>
<td>47062300</td>
<td>Cam Thrust Washer (6)</td>
</tr>
<tr>
<td>29</td>
<td>47162600</td>
<td>Cam Assembly Screw</td>
</tr>
<tr>
<td>30</td>
<td>47162500</td>
<td>Cam Gear</td>
</tr>
<tr>
<td>31</td>
<td>47162000</td>
<td>Intake Cam</td>
</tr>
<tr>
<td>32</td>
<td>47162100</td>
<td>Exhaust Cam</td>
</tr>
</tbody>
</table>

The specifications are subject to alteration for improvement without notice.
The specifications are subject to alteration for improvement without notice.
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>9.95 cc x 7 / 0.607 cu.in. x 7</td>
</tr>
<tr>
<td>Bore</td>
<td>24.0 mm / 0.945 in.</td>
</tr>
<tr>
<td>Stroke</td>
<td>22.0 mm / 0.866 in.</td>
</tr>
<tr>
<td>Practical R.P.M.</td>
<td>1,500-7,000 r.p.m.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>3,167 g / 111.71 oz.</td>
</tr>
</tbody>
</table>

Dimensions (mm)

O.S. Engines Mfg. Co., Ltd.
© Copyright 2010 by O.S. Engines Mfg. Co., Ltd. All rights reserved. Printed in Japan.

6-15 3-Chome Imagawa Higashisumiyoshi-ku
Osaka 546-0003, Japan
TEL. (06) 6702-0225
FAX. (06) 6704-2722

O.S. ENGINE

UNIVERSAL QUALITY PRECISION & PERFORMANCE

ELEVATING THE STANDARDS OF EXCELLENCE

O.S. ENGINES MFG. CO., LTD.
URL: http://www.os-engines.co.jp