WARRANTY

Great Planes® Model Manufacturing Co. guarantees this kit to be free from defects in both material and workmanship at the date of purchase. This warranty does not cover any component parts damaged by use or modification. In no case shall Great Planes’ liability exceed the original cost of the purchased kit. Further, Great Planes reserves the right to change or modify this warranty without notice.

In that Great Planes has no control over the final assembly or material used for final assembly, no liability shall be assumed nor accepted for any damage resulting from the use by the user of the final user-assembled product. By the act of using the user-assembled product, the user accepts all resulting liability.

If the buyer is not prepared to accept the liability associated with the use of this product, the buyer is advised to return this kit immediately in new and unused condition to the place of purchase.

While this kit has been flight tested to exceed normal use, if the plane will be used for extremely high stress flying, the modeler is responsible for taking steps to reinforce the high stress points.

READ THROUGH THIS MANUAL BEFORE STARTING CONSTRUCTION. IT CONTAINS IMPORTANT WARNINGS AND INSTRUCTIONS CONCERNING THE ASSEMBLY AND USE OF THIS MODEL.
TABLE OF CONTENTS

- Important Safety Precaution .. 2
- Introduction .. 2
- Precautions ... 2
- Preparations ... 2
 - Building Supplies and Tools ... 2
 - General Inspection ... 3
- Replacement Parts .. 3
- Assembly .. 3
- Optional Spoilers .. 4
- Radio Settings ... 5
- Balance The Model .. 5
- Checking For Warps .. 5
- Preflight .. 5
 - Charge the Batteries .. 5
 - Find a Safe Place to Fly ... 5
 - Range Check Your Radio ... 5
- AMA Safety Code (excerpt) ... 6
 - General .. 6
 - Radio Control .. 6
- Flying .. 6
 - Trim Flights .. 6
 - Your First Hi-Start Launch ... 6
 - First Flights .. 7
 - Thermal Flying ... 7
 - Facts About Thermals .. 7
 - Thermal Soaring .. 7
- Pointers For Contest Flying .. 8
- Ballasting .. 8
- Thermal Soaring .. 7

INTRODUCTION

The **Spirit Select** is a very stable and predictable aircraft, allowing pilots of differing skill levels to enjoy it.

The **Spirit Select** is easy to assemble, flies great, and would be a great selection as your first R/C airplane.

PRECAUTIONS

1. You must assemble the model according to the instructions. Do not alter or modify the model, as doing so may result in an unsafe or unflyable model. In a few cases the instructions may differ slightly from the photos. In those instances the written instructions should be considered correct.

2. You must make sure the R/C radio system and other components in the model operate properly on the ground and in the air.

3. You must test the operation of the model before every flight to insure that all equipment is operating and you must make certain that the model has remained structurally sound. Be sure to check clevises or other connectors often and replace them if they show signs of wear or fatigue.

Note:

We, as the kit manufacturer, provide you with a top quality kit and great instructions, but ultimately the quality of your finished model depends on how you build it; **therefore**, we cannot in any way guarantee the performance of your completed model, and no representations are expressed or implied as to the performance or safety of your completed model.

Remember: Take your time and follow directions to end up with a well-built model that is straight and true. Please inspect all parts carefully before starting to build!

YOU CAN CONTACT US...

If any parts are missing, broken or defective, or if you have any questions about building or flying this airplane, please call us at (217) 398-8970. You can also check our web site at www.greatplanes.com for the latest Spirit Select updates, or e-mail your questions to:

productsupport@greatplanes.com.

If you are calling for replacement parts, please reference the part numbers and have them ready when calling.

PREPARATIONS

Building Supplies & Tools

These are the only building tools that are required.

- [] Small Phillips Screwdriver
- [] Pliers

IMPORTANT SAFETY PRECAUTION

Your Spirit Select is not a toy, but rather a sophisticated, working model that functions very much like a full-size sailplane. Because of its realistic performance, the Spirit Select, if not assembled and operated correctly, could possibly cause injury to yourself or spectators and damage property.

We recommend you get experienced, knowledgeable help from an instructor during your first flights. You'll learn faster and avoid risking your model before you're ready to solo. Your local hobby shop has information about flying clubs in your area whose membership includes qualified instructors.

You can also contact the national Academy of Model Aeronautics (AMA), which has more than 2,500 chartered clubs across the country. Through any one of them, instructor training programs and insured newcomer training are available. Contact the AMA at the address or toll-free phone number below:

Academy of Model Aeronautics

5151 East Memorial Drive
Muncie, IN 47302-9252
Tele. (800) 435-9262
Fax (765) 741-0057
Or via the Internet at:
http://www.modelaircraft.org

PROTECT YOUR MODEL, YOURSELF & OTHERS...FOLLOW THIS IMPORTANT SAFETY PRECAUTION

- [] Small Phillips Screwdriver
- [] Pliers
Remove the fuselage, wing panels, and stabilizer assembly from their bags. Inspect all items closely to check for any damage. If any damage is found, contact the place where your Spirit Select was purchased, or Hobby Services, to obtain a replacement for your damaged items.

Your Spirit Select is covered using Top Flite® MonoKote® covering. Eliminate any wrinkles you find in the covering by shrinking them away with a heat gun. Then, apply pressure to the area with a covering iron and a hot sock. This will securely bond the covering to the wood so the wrinkles will be less likely to reappear in the future.

If needed, replacement parts for your Spirit Select are available through your hobby supplier.

Wing Kit ..GPMA2176
Fuselage Kit..GPMA2177
Tail Set..GPMA2178
Canopy Set...GPMA2179

1. Check the fit of the wing joiner in the wing panels. Remove any excess material from the joiner to allow the panels to fit together. The joiner does not have to be glued into the wing. This will allow the wing panels to be separated for easier transportation.

2. Find and open the holes in the stabilizer covering for the attachment screws. Attach the stabilizer to the fuselage using two 2mm x 15mm screws, two 2mm nuts and four 2mm washers. Use thread lock on the nuts to prevent loosening. **Note:** The fin and rudder have been removed for clarity in the photo above.

3. Attach the clevis in the second hole from the outside of the control horn. Trim the opening at the rear of the fuselage as necessary to allow the pushrod to move freely.

4. For contest flying you may want to move the tow hook to the rear hole as it can help achieve a higher launch but **be careful** as the sailplane will be more apt to “Pop-Off” the line.

Note: A piece of self-adhesive foam rubber weather stripping can be applied to the front of the fuselage bottom to help protect it from getting nicked up during landings.
OPTIONAL SPOILERS

Note: Since the spoiler installation is optional, none of the hardware has been included.

1. Use a hobby knife to cut a hole in the bottom of the wing sheeting for the **spoiler tubing** to exit the wing as shown.

2. Pull the end of the spoiler tubing out of the wing just far enough to glue it in place using thick CA.

3. Cut the covering all around the edge of the **spoiler** and remove it from the wing panel.

4. Tape the spoiler in position in the wing using a strip of cellophane or vinyl tape or a strip of covering. The tape should be flexible enough to allow the spoiler to close on its own. The tape should also be replaced occasionally as it will eventually rip.

5. Thread a 42" [1070mm] length of braided fishing line (not included) through the spoiler tubing in the wing.

6. Thread one end of the line through the small hole in the spoiler horn and use a piece of a round toothpick to hold the line in the horn. Allow about 1/2" [13mm] to hang out the other side of the horn for fine adjustments. It may be necessary to drill out the spoiler control horn using a 3/32" [2.5mm] drill bit. Trim the shear web to allow the toothpick to pass through without interference.

7. Glue a small lead weight on the bottom side of the spoiler to help it close. 1/4 – 1/2 oz. is usually enough since the airflow will keep the spoilers closed when the plane is flying. Repeat steps 1 through 7 for the opposite spoiler.

8. Mount the wing onto the fuselage and pull the ends of the spoiler strings up to the spoiler servo. Position the spoiler servo horn at the rearward end of its swing and wrap one spoiler string around the screw in the horn. With the spoilers held closed, apply a drop of CA to glue the string to itself, forming a small loop. Remove that string and do the same steps to the other string. The two strings should be the same length (be careful not to glue the two strings together) and the spoilers should open and close together. Adjustments can be made at the toothpick end if needed.
Use the sketch to make sure the control surfaces are moving the correct directions.

The control throws are as follows:

Elevator
- 1/2" [13mm] up
- 1/2" [13mm] down

Rudder
- 1-1/2" [38mm] left
- 1-1/2" [38mm] right

Spoilers
- 90º to the upper surface of the wing

Note: This section is VERY important and must not be omitted! A model that is not properly balanced will be unstable and possibly unflyable.

Accurately mark the balance point on the bottom of the wing on both sides of the fuselage. The balance point is located 3-1/4" [83mm] back from the leading edge. This is the balance point at which your model should balance for your first flights. Later, you may wish to experiment by shifting the balance up to 5/16" [8mm] forward or back to change the flying characteristics. Moving the balance behind the spar makes the model more agile with a lighter and snappier “feel” and improves the sailplane’s response to air currents. In any case, please start at the location we recommend and do not at any time balance your model outside the recommended range.

With the wing attached to the fuselage, and all parts of the model installed (ready to fly), lift the model by picking it up with a finger on each bottom inner spar. If the tail drops when you lift, the model is “tail heavy” and you must add weight to the tail to balance. If the nose drops, it is “nose heavy” and you must add weight to the nose to balance. The model should hang with a slight nose down attitude. Add BB’s or lead to the weight compartment at the front of the fuselage to correct a tail heavy model. In the unusual circumstance that you would have a nose heavy model, you can switch the receiver and battery or even move the receiver behind the servos. Getting the weight farther back helps correct the “nose heaviness.”

CHECKING FOR WARPS

This is a very important step and should be done occasionally throughout the flying season. A sailplane’s wing is most efficient when it is not twisted or warped at all. “Washout” (wing trailing edges twisted up at the tip) helps make a poor wing design fly better by adding some stability (preventing stalls) at slow speeds but it cuts down on the wing efficiency at normal speeds. The Spirit Select’s wing is designed to fly well at slow speeds without any washout, and therefore we recommend you check to make sure the wings are “flat” using the following procedure:

Set the wing so an inner panel is resting on a flat surface. Any warp (twist) will show up by causing a corner of the panel to rise off the work surface.

To remove the warp, gently twist the wing in the opposite direction while a helper glides an iron or heat gun over the covering on both the top and the bottom of the panel to re-shrink the covering. Hold the twist until the covering cools and then recheck for warps. It may take several tries to get a warp out but it is worth it as you will end up with a sailplane that flies straight and true and responds to air currents like a high performance sailplane should.

Follow the same procedure to check all four wing panels and then go back and double check them. Sometimes you put a warp in one panel while trying to fix another. You should also look at the tail surfaces as they too can warp.

PREFLIGHT

Charge the Batteries

Follow the battery charging procedures in your radio instruction manual. You should charge your transmitter and receiver batteries the night before you go flying, and at other times as recommended by the radio manufacturer.

Find a Safe Place to Fly

The best place to fly your R/C model is an AMA (Academy of Model Aeronautics) chartered club field. Ask your hobby shop dealer if there is such a club in your area and join. Club fields are set up for R/C flying which makes your outing safer and more enjoyable. The AMA can also tell you the name of a club in your area. We recommend that you join AMA and a local club so you can have a safe place to fly and also have insurance to cover you in case of a flying accident. (The AMA address is listed on page 2 of this instruction book).

If a club and its flying site are not available, you need to find a large, grassy area at least 6 miles away from any other R/C radio
operation and away from houses, buildings and streets. A schoolyard may look inviting but it is usually too close to people, power lines and possible radio interference.

If you are not thoroughly familiar with the operation of R/C models, ask an experienced modeler to check to see that you have the radio installed correctly and that all the control surfaces do what they are supposed to.

Range Check Your Radio

Wherever you do fly, you need to check the operation of the radio before every time you fly. This means with the transmitter antenna collapsed and the receiver and transmitter on, you should be able to walk at least 100 feet away from the model and still have control. Have someone help you. Have them stand by your model and, while you work the controls, tell you what the various control surfaces are doing.

AMA SAFETY CODE (excerpt)

Read and abide by the following Academy of Model Aeronautics Official Safety Code excerpt:

General

1. I will not fly my model aircraft in competition or in the presence of spectators until it has been proven to be airworthy by having been previously successfully flight tested.

2. I will not fly my model aircraft higher than approximately 400 feet within 3 miles of an airport without notifying the airport operator. I will give right of way to, and avoid flying in the proximity of full-scale aircraft. Where necessary an observer shall be utilized to supervise flying to avoid having models fly in the proximity of full-scale aircraft.

3. Where established, I will abide by the safety rules for the flying site I use, and I will not willfully and deliberately fly my models in a careless, reckless and/or dangerous manner.

Radio Control

1. I will have completed a successful radio equipment ground check before the first flight of a new or repaired model.

2. I will not fly my model aircraft in the presence of spectators until I become a qualified flyer, unless assisted by an experienced helper.

3. I will perform my initial turn after takeoff away from the pit, spectator and parking areas, and I will not thereafter perform maneuvers, flights of any sort or landing approaches over a pit, spectator or parking area.

FLYING

First of all, if you are flying with other flyers check to make sure they are not flying or testing on the same frequency as your model.

Try to find an experienced pilot to help you with your first flights. Although the Spirit Select is very easy to fly, an experienced pilot can save you a lot of time and possible aggravation by helping you get your model in the air smoothly.

Trim Flights

It is a good idea to do a couple of trim flights before each flying session to make sure the plane is still in trim and the radio is working properly. The model will survive a hard landing from 5 feet much better than it will one from several hundred feet. The first few trim flights should be done over a grass field. The longer the grass the better (more cushion).

Turn on the transmitter first and then the receiver. Hold the Spirit Select under the wing with the nose pointed slightly down and directly into the wind as shown in the photo. It is very important that you launch the model with the wings level and the nose pointing at a spot on the ground about 50 feet in front of you. Have a friend stand off to the side of you and tell you whether the nose is pointing up or down. Show your friend the picture above so he will know what to look for. If the sailplane is launched with the nose up or launched too hard it will climb a few feet, stall and fall nose first straight down. With the nose pointed down slightly the sailplane will accelerate down until it picks up enough flying speed then level off and glide forward. The plane should be launched with a gentle push forward. With a little practice you will be able to launch it at just the right speed so it soars straight ahead in a long and impressive glide path. Adjust the trims on your transmitter to get the plane to fly straight ahead in a smooth glide path.

Once you get the hang of launching it you can try turning the plane during the trim flights by gently applying a “touch” of right or left rudder. You can also try “flaring” the landings by slowly applying a touch of up elevator (pull the stick back) as the plane nears the ground. The Spirit Select will continue to fly just a few inches off the ground for a surprisingly long distance. It is important you don’t “over-control” the model. Make any control inputs slowly and smoothly rather than moving the transmitter sticks abruptly.

Your First Hi-Start Launch

A hi-start is the most popular way to launch your Spirit Select. It consists of 25’ – 100’ of rubber tubing and 200’ – 400’ of string with a parachute or streamer at the end. One end of the rubber is staked down directly upwind of the launch point. One end of the string is attached to the other end of the rubber and the end of the string with the parachute has a loop or ring and is attached to the tow hook on the sailplane.
Follow the directions that came with the hi-start and lay it out directly into the wind. Place the stake at the far upwind edge of the flying field so the parachute will blow back onto the flying field.

Turn on your transmitter and then your receiver and hook the parachute onto your plane’s tow hook. Pull the plane back approximately twice as far as the rubber is long (i.e., 100’ of rubber = pull back 200’) or whatever the hi-start instructions state. A “fish scale” is handy for determining the correct amount of pull. For your first flights pull the plane back until there is approximately 8 lbs. of tension. More tension can be used after you get acquainted with the launching procedure.

Hold the plane above your head with the wings level and the nose pointed slightly up and directly into the wind. Give the plane a healthy push forward to get it flying and it will climb up like a kite. You should not have to touch the elevator during the launch but use the rudder stick to keep it going straight up. As the rubber relaxes the plane will fly off the hi-start and the parachute will bring the end of the string back towards you.

First Flights

Find a BIG, OPEN field for your first flights. The bigger the better as you won’t have to worry about where you need to land. Ground based objects (trees, poles, buildings, etc.) seem to attract model airplanes like a magnet. Again, we would like to recommend that you find an experienced pilot to help you with these first flights.

Note: You need to remember that your radio control responds as if you were sitting in the cockpit. When you push the transmitter stick to the right, the rudder moves to the plane’s right! This means that when the plane is flying towards you it may seem like the rudder controls are reversed (when you give “right” rudder the plane turns to your left—which is the plane’s “right”). It is sometimes easier to learn to fly the plane if you always face your body in the direction the plane is flying and look over your shoulder to watch the model.

Don’t worry about accomplishing very much on your first flights. Use these flights to get the “feel” of the controls and the Spirit Select’s flying characteristics. Try to keep the plane upwind and just perform some gentle “S-turns” (always turning into the wind) until it is time to set up for landing. Have a helper adjust the trims on your transmitter (a little at a time) until the plane will fly straight and level with the transmitter sticks in their neutral positions. It can be very hard for a beginner to fly a plane straight towards himself as he would have to do if the plane were downwind and every mistake takes the plane a little farther downwind. When it is time to land, just continue performing the gentle “S-turns” upwind and let the plane glide onto the ground. Don’t worry about where the plane lands—just miss any trees, etc.

Practice flying directly into the wind (upwind of yourself) without letting the plane get off course, and then turn and come downwind until the plane is even with you and try it again. When you are comfortable with flying directly into the wind, start letting the plane go behind you (downwind) a little before you start back upwind. Continue this until you can fly directly towards you from downwind without getting disoriented. At this point you can start to establish a “landing pattern” and bring the sailplane in for a landing from downwind. This enables the plane to be flown as slowly (ground speed) as possible for accurate landings.

Thermal Soaring

Thermal soaring is one of the most intriguing of all aspects of flying and the Spirit Select was designed to excel at thermal soaring even in the hands of a novice. It can be hard for the average person to understand how a plane can fly for hours and gain altitude without a motor!

Facts About Thermals

Thermals are a natural phenomenon that happen outside, by the millions, every single day of the year. Thermals are responsible for many things including forming several types of clouds, creating breezes, and distributing plant seeds and pollen. If you have ever seen a dust devil (which is nothing more than a thermal that has picked up some dust), you have seen a thermal in action. Their swirling action is very similar to that of a tornado but of course much gentler. Most thermals have updrafts rising in the 200 – 700 feet per minute range but they have been known to produce updrafts of over 5,000 feet per minute (that’s over 50 miles/hour straight up!) These strong thermals can rip a plane apart or carry the plane out of sight before the pilot can get out of the updraft.

Thermals are formed by the uneven heating of the earth and buildings, etc. by the sun. The darker colored surfaces absorb heat faster than the lighter colors which reflect a great deal of the sun’s energy back into space. These darker areas (plowed fields, asphalt parking lots, tar roofs, etc.) get warmer than the lighter areas (lakes, grassy fields, forests, etc.). This causes the air above the darker areas to be warmer than the air over the lighter areas and the more buoyant warm air rises as the cooler, denser air forces its way underneath the warmer air. As this warm air is forced upward it contacts the cooler air of the higher altitudes and this larger temperature difference makes the thermal rise quicker. The thermal is gradually cooled by the surrounding cooler air and its strength diminishes. Eventually the thermal stops rising and any moisture contained in the once warm air condenses and forms a puffy cumulus cloud. These clouds, which mark the tops of thermals, are usually between 2000 and 5000 feet high.

It takes a lot of concentration to thermal soar effectively. A sailplane can fly along the edge of a thermal and unless the pilot is carefully watching the model he may not realize the opportunity to gain some altitude. Because most thermals are relatively small (a couple hundred feet in diameter or less at 400’ altitude) compared to the rest of the sky, the sailplanes will rarely fly directly into the thermal and start rising. Generally, the sailplane will fly into the edge or near a thermal and the effects the thermal has on the plane may be almost unnoticeable. As the sailplane approaches a thermal, the wing tip that reaches the rising air first will be lifted before the opposite wing tip. This causes the plane to “bank” and turn away from where we would like the plane to go.

When you are thermal soaring, try to fly as smoothly and straight as possible. Trim the plane to fly in a straight line and only touch the controls when you have to. Watch the sailplane carefully and it will tell you what it is encountering.

When the sailplane flies directly into a thermal it will either start rising or stop sinking. Either case is reason enough to start circling (especially in a contest where every second counts). Fly straight
keep it banking) until it has turned 270-degrees (3/4 of a full circle).

are produced when the sun is directly overhead. 10:00 am – 2:00 pm

If the sailplane is flying along straight and all of a sudden turns, let

back to the field to land.

thermaling, that you don't get so far downwind you can’t make it

so as you circle you will be swept along with it. Be careful when

thermaling, that you don’t get so far downwind you can’t make it

back to the field to land.

Thermals are generated all day long, but the strongest thermals

are produced when the sun is directly overhead. 10:00 am – 2:00 pm

seems to be the best time to get those “killer” thermals. Some of

these thermals can be very large and you may find it hard to get

out of them. If you find yourself getting too high, don’t dive the

plane to get out of the lift. Sailplanes are very efficient aircraft and

they will build up a lot of speed and could “blow up” in the rough air

of a thermal. The easiest way to lose altitude is to apply full rudder

and full up elevator. This will put the plane into a tight spin that will

not over stress the airframe but it will enable it to lose altitude very

quickly. This is especially helpful if the sailplane gets sucked into a

cloud or it gets too high to see. The twirling action will give the sun

a better chance of flashing off of the wing and catching your

attention. When you are high enough and want to leave the

thermal, add a little down trim to pick up some speed and fly 90

degrees to the direction of the wind. If you are not real high and

want to find another thermal, you may want to look upwind of the

last thermal. The same source that generated this thermal is

probably producing another. Just watch out for “sink” which is often

found behind and between thermals.

As you might expect, with all this air rising, there is also air sinking.

This air is the sailplane pilot’s nightmare that can really make soaring challenging. “Sink” is usually not as strong as the thermals in the same area, but it can be very strong. Down drafts of many hundreds of feet per minute are common on a good soaring day. These down drafts can make a sailplane look like it is falling out of the air. Because of this, it is important that you do not let the sailplane get too far downwind.

When encountering sink, immediately turn and fly 90 degrees to

the direction of the wind (towards you if possible). Apply a little

“down elevator” and pick up some speed to get out of the sink as

fast as possible. Every second you stay in the sink is precious altitude lost.

Pay Attention! – Pay close attention to the sailplanes flying before you, watch them and try to establish where and when the thermals are being formed. Thermals are often formed in cycles and can be fairly regular, so if you keep track of the time intervals you will have a pretty good idea of when and where a thermal may be generated.

Watch The Birds! – Thermals suck up small insects that many birds love to eat. A bunch of swallows flying around in one area may indicate a thermal. Soaring birds (hawks, vultures, eagles etc.) are the best thermal indicators. They not only show you where the thermal is but they also show you where the center is. These “Masters of the Sky” will often fly right along with sailplanes.

Practice Those Landings! – Most thermal contests are won or lost during the landing. Establish a particular landing pattern and try to stick to it for all landings. Learn to shift your pattern to account for the wind and particular flying field characteristics. Spoilers can be very useful during contest landings. They allow you to bring the sailplane in for a landing higher or faster than normal to guard against any last minute sink or gusts and dump the extra altitude and speed at the last second. They can also be used to help control your skid. Opening the spoilers will stop the plane from sliding a little quicker. You can also “steer” the plane while it is sliding along the ground. Don’t expect to be able to “horse it around” but you can gain valuable inches by using the rudder to guide it toward the spot as it slides to a stop. Be very careful not to “ground loop” the plane since you will lose your landing points if the plane flips over.

Concentrate – Keep your eye on your sailplane during your contest flights. Have a helper or your counter watch the other sailplanes in the air. Sometimes your sailplane will wiggle so quickly or gently that you may miss it if you are not paying close attention. If you find a productive thermal, don’t leave it because your helper tells you that someone else has found a different one.

Know Your Sailplane! – Learn what your sailplane will and won’t do and fly within this envelope. This will allow you to ride thermals downwind while knowing when you have to head back to make your landing safely.

Learn From The Wind! – Keep track of which way the wind is blowing. If the wind suddenly shifts, there is some thermal action fairly close to you. The air is probably being either sucked up into a thermal or falling out of some sink. In either case it is often a good idea to fly in the direction the wind is blowing if your sailplane is in the general area. This will take you towards a thermal if there is one or away from the sink, both of which are desirable.

BALLASTING

In strong wind conditions, you may want to add ballast (weight) to the sailplane to increase its wing loading which increases its normal flying speed. Increasing the weight of your sailplane does not change its “glide ratio” but it does make it fly faster which makes it sink a proportional amount faster. Because of this faster sink rate, you need to be very cautious when ballasting for a thermal contest. In duration type contests only use ballast on very windy days that also have a lot of thermal activity.

Add the weight as near as possible to the C.G. of the plane. Adding 6 – 8 oz. will make a noticeable difference in the sailplane’s flying speed and more can be added later, if needed. Make sure to recheck the C.G. of the plane after adding ballast–it should remain where it was.

Have a ball! Remember to always stay in control and fly in a safe manner.

GOOD LUCK AND GREAT FLYING!