READ THROUGH THIS MANUAL BEFORE STARTING CONSTRUCTION. IT CONTAINS IMPORTANT INSTRUCTIONS AND WARNINGS CONCERNING THE ASSEMBLY AND USE OF THIS MODEL.
INTRODUCTION

If you’ve built any of the previous Great Planes Indoor Aerobatic planes, the Citabria 3D Indoor EP ARF uses the same proven methods. If this is your first Great Planes Indoor Aerobatic plane, you will be surprised at how quickly and easily you can have it in the air. The building crutches make aligning the parts a non-issue. So let’s get this plane built and go have some fun.

For the latest technical updates or manual corrections to the Citabria 3D Indoor EP ARF, visit the Great Planes web site at www.greatplanes.com. Open the “Airplanes” link, then select the Citabria 3D Indoor EP ARF. If there is new technical information or changes to this model a “tech notice” box will appear in the upper left corner of the page.

Academy of Model Aeronautics

If you are not already a member of the AMA, please join! The AMA is the governing body of model aviation and membership provides liability insurance coverage, protects modelers’ rights and interests and is required to fly at most R/C sites. The AMA has two classes of membership available: Open membership or their Park Pilot Program, which this aircraft qualifies for. The Park Pilot Program is for people flying electric aircraft and gliders under two pounds and which fly slower than 60mph. This will enable you to enjoy most AMA benefits and organize clubs and flying sites in more congested areas.

Academy of Model Aeronautics
5151 East Memorial Drive
Muncie, IN 47302-9252
Ph. (800) 435-9262
Fax (765) 741-0057

Academy of Model Aeronautics

Or via the Internet at:
http://www.modelaircraft.org
http://www.modelaircraft.org/parkflyer.aspx

IMPORTANT!!! Two of the most important things you can do to preserve the radio controlled aircraft hobby are to avoid flying near full-scale aircraft and avoid flying near or over groups of people.

SAFETY PRECAUTIONS

Protect Your Model, Yourself & Others ...
Follow These Important Safety Precautions

1. Your Citabria 3D Indoor EP ARF should not be considered a toy, but rather a sophisticated, working model that functions very much like a full-size airplane. Because of its performance capabilities, the Citabria 3D, if not assembled and operated correctly, could possibly cause injury to yourself or spectators and damage to property.

2. You must assemble the model according to the instructions. Do not alter or modify the model, as doing so may result in an unsafe or unflyable model. In a few cases the instructions may differ slightly from the photos. In those instances the written instructions should be considered as correct.

3. You must take time to build straight, true and strong.

4. You must use an R/C radio system that is in good condition, a correctly sized engine, and other components as specified in this instruction manual. All components must be correctly installed so that the model operates correctly on the ground and in the air. You must check the operation of the model and all components before every flight.
5. If you are not an experienced pilot or have not flown this type of model before, we recommend that you get the assistance of an experienced pilot in your R/C club for your first flights. If you’re not a member of a club, your local hobby shop has information about clubs in your area whose membership includes experienced pilots.

6. Carefully read and follow all the instructions included with your LiPo battery and battery charger. LiPo batteries are not forgiving like NiCd or NiMH batteries. Overcharging or charging the LiPo battery at too high a current will damage the battery and could damage property.

We, as the kit manufacturer, provide you with a top quality, thoroughly tested kit and instructions, but ultimately the quality and flyability of your finished model depends on how you build it; therefore, we cannot in any way guarantee the performance of your completed model, and no representations are expressed or implied as to the performance or safety of your completed model.

Remember: Take your time and follow the instructions to end up with a well-built model that is straight and true.

DECISIONS YOU MUST MAKE

This is a partial list of items required to finish the Citabria 3D Indoor EP ARF that may require planning or decision making before starting to build. Order numbers are provided in parentheses.

Indoor Motor and Battery Recommendations

For best indoor flight performance, a lightweight battery is recommended. We recommend:

- (1) Great Planes® Competition Series 7.4 volt 300mAh 20C LiPo battery (GPMP0700)
- (1) FlightPower® EON-X™ Lite 7.4 volt 350mAh 25C LiPo battery (FPWP4014)
- (1) RimFire™ 250 (GPMG4502)
- (1) ElectriFly® 8amp Brushless ESC (GPMM1800) or FlightPower 10amp Brushless ESC (FPWM0210)
- (1) 8 x 3.5 PowerFlow™ Propeller (GPMQ6608)

Outdoor Motor and Battery Recommendations:

- (1) Great Planes Competition Series 11.1 volt 300mAh 20C LiPo battery (GPMP0701)
- (1) FlightPower EON-X Lite 11.1 volt 350mAh 25C LiPo battery (FPWP4015)
- (1) RimFire 300 (GPMG4505)
- (1) FlightPower 10amp Brushless ESC (FPWM0210)
- (1) 8 x 3.5 PowerFlow Propeller (GPMQ6608)

Radio Recommendations

A 4-channel radio system is required.

- (3) Futaba® S3114 Micro High Torque servos (FUTM0414)
- (1) Futaba R6004FF Mini Receiver (FUTL7624)

Charger

A LiPo compatible charger is required to charge LiPo batteries. The Great Planes ElectriFly PolyCharge4™ is designed for LiPo packs only; however, it is able to charge four LiPo packs simultaneously. The ElectriFly Triton2™ and AC/DC Triton2 EQ chargers will only charge one pack at a time, but are capable of charging NiCd, NiMH, Pb acid and LiPo batteries. Order numbers are provided below.

- Great Planes PolyCharger4 DC Only 4 Output LiPo Charger (GPMM3015)
- Great Planes ElectriFly Triton2 DC Comp Peak Charger (GPMM3153)
- Great Planes AC/DC Triton2 EQ Charger/Balancer (GPMM3156)

Throughout the life of a LiPo battery, the individual cells located inside the battery may become unbalanced. These unbalanced cells can shorten the life of the battery or cause it to malfunction. For this reason, it is always recommended that a cell balancer be used when charging LiPo batteries. The Electrifl y Equinox™ is a cell balancer that may be used with any LiPo charger and is capable of maintaining the cell balance of the battery. **Note:** The AC/DC Triton2 EQ does not require a cell balancer.

- Great Planes ElectriFly Equinox LiPo Cell Balancer (GPMM3160)

ADDITIONAL ITEMS REQUIRED

Adhesives and Building Supplies

This is the list of adhesives and building supplies that are required to finish the Citabria 3D Indoor Foam Plane.

- (1) UFO Foam Safe Thin CA 1oz. (HOTR1040)
- (1) CA Activator Foam Safe 2oz. pump (GPMR6035)
- (1) Hobby Knife with 5 blades (RMXR6900)
- (1) Phillips head screwdriver
- Hobbico® Soldering Iron 30 Watt (HCAR0775)
- Straightedge
Optional Supplies

Here are optional tools that will help you build the Citabria 3D.

- CA applicator tips (HCAR3780)
- CA debonder (GPMR6039)
- Precision Magnetic Prop Balancer (TOPQ5700)
- Waxed Paper

IMPORTANT BUILDING NOTES

- Photos and sketches are placed before the step they refer to. Frequently you can study photos in following steps to get another view of the same parts.

KIT INSPECTION

Carefully remove the major parts from the kit. Take an inventory to make sure it is complete, and inspect the parts to make sure they are of acceptable quality. If any parts are damaged or missing or are not of acceptable quality, or if you need assistance with assembly, contact Product Support. When reporting defective or missing parts, use the part names exactly as they are written in the Kit Contents list.

Great Planes Product Support
3002 N Apollo Drive, Suite 1
Champaign, IL 61822
Ph: (217) 398-8970, ext. 5
Fax: (217) 398-7721
E-mail: airsupport@greatplanes.com

KIT CONTENTS

Kit Contents

1. Vertical Fuselage
2. Horizontal Fuselage
3. Wing
4. Landing Gear
5. Diagonal Support
6. Upper Motor Doubler
7. Horizontal Fuselage Doubler
8. Vertical Fuselage Doubler
1. Locate the two **ABS landing gear supports**. Glue a landing gear support to each side of the fuselage in the location shown.

2. Remove the nine **fuselage alignment crutches** from the surrounding foam. **Note:** Use a sharp hobby knife to cut the crutch parts from the surrounding foam, trimming the tabs flush with the edges of the crutches.

3. To prevent the parts from adhering to your building table, place a piece of waxed paper, or the clear plastic bag the parts came in, on your table. Use foam safe CA to glue the nine **alignment crutch feet** to the alignment crutches. Make sure the crutches and feet are flat against the building table and that the crutches are perpendicular to the table.

4. Insert the aft end of the horizontal fuselage into the front of the vertical fuselage. Key the horizontal and vertical fuselages together.

5. On your building table, place the four bottom crutches with the feet on them underneath the fuselage in the locations shown. Crutch #1 is positioned in line with the bottom of the windscreen. Crutch #2 is positioned at the first hole in the side of the fuselage. Crutch #3 is positioned at the third hole in the side of the fuselage. Crutch #4 is positioned at the fifth hole in the side of the fuselage, just under the leading edge of the stabilizer.

6. Test fit the #1, #2 and #3 top crutches over their corresponding bottom crutches. Install the ABS **motor mount** onto the front of the firewall, but **DO NOT** glue it in place at this time. Check that all the crutches are seated against the fuselage and the horizontal and vertical fuselages are keyed together. Then, glue the top and bottom of crutches #1, #2 and #3 together by applying small amount of foam-safe CA to the tabs of the crutches. **Be careful not to glue the crutches to the fuselage.**

7. Position the #4 top crutch over the corresponding #4 bottom crutch.
8. Make sure the horizontal and vertical fuselages are keyed together and the crutches are flat on your building table. Glue the horizontal and vertical fuselages together by applying thin foam-safe CA along the joint between the two. Be careful when gluing around the crutches. DO NOT glue the crutches to the fuselage. Allow the CA to cure for a few minutes before moving the plane. The use of foam-safe accelerator will quicken the curing of the CA, but use it sparingly. Excessive amounts of accelerator can cause the CA to cure quickly, causing it to get hot and melt the foam.

9. On the left side of the fuselage, from the aft end, slide the diagonal support with the hole in it, under the crutches. Align the hole in the diagonal support with the hole in the horizontal fuselage. Use foam-safe CA to glue the diagonal support at a 45 degree angle against the horizontal and vertical fuselages.

10. Insert and glue the second diagonal support on the right side of the fuselage. Make sure the aft end of the right diagonal support is the same distance from the rudder hinge line as the left diagonal support.

11. Place the wing upside down on the building table. Carefully turn the Citabria over and key the top of the fuselage into the bottom of the wing. Note that the vertical fin will need to hang over the edge of the building table. Check that #1, #3 and #4 crutches are flat on the building table. The #2 building crutch should be flat on the wing. Check that the horizontal and vertical fuselages are keyed together. Use foam-safe CA to glue the bottom of the horizontal and vertical fuselages together and the wing and vertical fuselage together.

Install the Wing Supports

1. Locate the two ABS brace supports. There is a slot located in the center of each wing. Glue the ABS brace supports into the slots, perpendicular to the underside of the wing. It is possible that, during manufacturing, some glue may have gotten into the slot. If this has happened, DO NOT FORCE the supports into the slot. Use a sharp hobby knife to remove any excess glue.

2. Locate the four long and two medium ABS brace doublers

Note: For steps 3 through 5, DO NOT glue the parts until told to do so.
3. Slide one of the long brace doublers onto a 2 x 390mm carbon rod. Slide the carbon rod through the brace support in the wing and into the small hole in the landing gear support. With the long brace doubler on the carbon rod, insert the other end of the carbon rod in the slot at the tip of the wing. The carbon rod should go through the long brace doublers and into the wing.

4. Slide a second long brace doubler onto another 2 x 390mm carbon rod. Slide the carbon rod through the brace support. Slide a medium brace doubler on the rod and then insert the end of the rod in the slot in the bottom of the vertical fuselage. Insert the other end of the rod in the slot at the tip of the wing.

5. Go back to step 3 and install the carbon rods on the other side of the fuselage. Check that all the carbon rods are straight.
6. Check that all the carbon rods and brace doublers are in position and straight and the crutches are in position and flat on the building table. Start by gluing the carbon rod and the long brace doubler to the wing at the wing tip.

7. Next check that everything is still straight and glue the carbon rod to the landing gear support.

8. Position the medium brace doublers so that both carbon rods pass through the brace doubler. Glue the brace doubler and carbon rod to the vertical fuselage.

9. Once the glue has cured, glue the carbon rods to the brace supports.

10. Turn the fuselage upright and position it on the crutches. Slide two ABS small brace doublers onto a 1 x 90mm carbon rod. Insert the carbon rod in the slot in the top of the stabilizer and the side of the vertical fin.

11. Insert the carbon rod and brace doublers on the other side of the fin and stabilizer.

12. Check that the stabilizer and fin are perpendicular to each other. Glue the carbon rods and brace doublers to the stabilizer and fin.
Install the Fuselage Doublers

1. Remove the motor mount and glue the upper motor doubler to the front of the vertical fuselage. The front of the upper motor doubler should be flush with the front of the fuselage.

2. Turn the plane upside down. Use a sharp hobby knife to carefully cut the #1, #2 and #3 bottom crutches from the top crutches.

3. Glue the two horizontal fuselage doublers to the front of the fuselage. Make sure they are flush with the front of the fuselage and against the vertical fuselage.

4. Glue the two vertical fuselage doublers to the front of the fuselage. Make sure they are flush with the front of the fuselage and against the horizontal fuselage doubler.

5. Glue the ABS motor mount to the front of the fuselage. Apply a bead of glue to the joint on all sides of the fuselage and motor mount. Take note of the orientation of the three large holes.

RADIO INSTALLATION

Install the Rudder & Elevator Servos

1. Use foam-safe CA to glue the elevator servo offset around the forward servo mounting hole on the left side of the fuselage.
2. Connect the elevator servo to your receiver. Remove the servo screw from the servo and install a large servo arm onto the servo. Center the trims on the transmitter. Position the servo arm so that one arm is perpendicular to the centerline of the servo as shown. Use diagonal pliers to remove the three extra servo arms.

3. Install the elevator servo in the forward servo hole with the output shaft towards the front of the fuselage. Glue the servo in place with foam-safe CA. Be careful not to get any glue inside the servo case.

4. Center the servo arm on the rudder servo and trim off the extra servo arms. Use foam-safe CA to glue the rudder servo, with the output shaft forward, in the aft servo hole on the left side of the fuselage.

5. Install the pre-assembled elevator pushrod by inserting the ABS pushrod guides through the fuselage as shown. DO NOT glue the pushrod guides in place at this time.

6. Insert the rudder pushrod from the front, through the five pushrod guides. The z-bend should be next to the rudder servo arm.

7. Remove the elevator servo arm and insert the z-bend into the outer hole of the arm, approximately 5/8” [16mm] from the center of the servo arm. Note: If you are not using a computer radio, and do not wish to set your model up with 3D control throws, you will need to insert the z-bend in a hole closer to the center of the servo arm. The z-bend should be installed so that the pushrod is on the back side of the servo.
arm, closest to the fuselage. Center the servo and reinstall the servo arm onto the servo, securing it with the servo screw.

8. Insert the z-bend in the elevator control horn. Insert the control horn in the slot in the elevator. The notch in the control horn should slide over the carbon fiber strip in the elevator. If the control horn will not fit over the carbon fiber strip, use a sharp hobby knife to remove the excess glue from the slot. **DO NOT** glue the horn to the elevator until told to do so.

9. Remove the servo arm from the rudder servo and insert the z-bend in the outer hole of the servo arm. The pushrod should be to the outside of the servo arm, away from the fuselage. Re-install the servo arm screw in the servo.

10. Slide the **black heat shrink tubing** over the aft end of the rudder pushrod. Insert the z-bend wire into the hole in the rudder control horn from the bottom. Slide the other end of the z-bend wire into the heat shrink and install the rudder control horn in the rudder. **Note:** The rudder hinge tape may be covering the front of the rudder control horn slot. Use a sharp hobby knife to trim the tape from the slot. Secure the z-bend wire to the rudder pushrod by shrinking the heat shrink tubing using a soldering iron. **Be careful** when using the soldering iron close to the foam. The foam will melt if it is touched with the hot soldering iron.

Adjust the Pushrods

1. With the transmitter and receiver switched on and the elevator servo centered, make sure that the elevator control horn is seated against the elevator. Check that the elevators are centered. If they are not, you will need to adjust the length of the z-bend.

PUSHROD LENGTH ADJUSTMENT

For your convenience, the aileron and elevator pushrods have been pre-assembled. If you are not using a Futaba S3114 servo, or due to manufacturing tolerances, it may be necessary to change the pushrod length. This may be done by holding the heat shrink tubing that connects the pushrod to the z-bend and gently rotating the z-bend until the glue holding the z-bend breaks loose. Then, adjust the length by pulling or pushing the z-bend until the appropriate length is achieved. Re-glue the z-bend to the pushrod using a drop of thin CA. **Be careful** that the CA does not run down the pushrod and into the pushrod guides.

2. Once the elevator is centered, apply a bead of foam-safe CA along the joint between the elevator control horn and the elevator.

3. Use foam-safe CA to glue the rudder control horn to the rudder.

4. Adjust the length of the pushrod so that when the rudder servo is centered, the rudder is centered.

5. Apply a drop of thin CA to the end to the heat shrink to further secure the z-bend to the pushrod.
6. Operate the rudder and elevator, checking that the pushrods do not bind in the pushrod guides. Adjust the position of the pushrod guides so that the pushrods are straight and the guides are 90 degrees to the fuselage. Glue the pushrod guides to the fuselage with foam-safe CA.

Install the Aileron Servo

1. Use foam-safe CA to glue the aileron servo doubler to each side of the fuselage.

2. Connect the aileron servo to the receiver and center the servo arm. Place the **ABS servo arm extension** on the underside of the servo arm. If you are using Futaba servo arms, the holes in the servo arm and the holes in the servo arm extension will align. If you are using another brand of servo arm, you may need to drill a pilot hole with a #60 [1mm] drill bit in the servo arm that will align with the mounting holes in the servo arm extension.

3. Attach the servo arm extension to the servo arm using two 3/64" [1.2mm] self tapping screws.

4. Install the aileron servo arm on the aileron servo. Make sure the servo arm is centered. Once the servo is installed, removal of the servo arm is difficult.

5. Use foam-safe CA to glue the aileron servo to the fuselage. Make sure the aileron servo wire is on the right side of the fuselage.
6. Insert the z-bend of both aileron pushrods in the aileron servo extension.

7. Insert an ABS aileron control horn onto the end of both aileron pushrods. Insert the aileron control horns in the slot in both ailerons. With the transmitter switched on and the aileron servo arm centered, check that both ailerons are centered. If they are not, adjust the length of the aileron pushrods as needed. Then, glue the aileron control horns in the aileron. Again, check that the ailerons are centered and apply a drop of thin CA to the end of the heat shrink tubing.

INSTALL THE MOTOR

1. Install the motor to the motor mount using the included #2 x 3/8" [9.5mm] self-tapping screws.

2. Insert the landing gear through the landing gear support and into the horizontal fuselage. Be careful not to push the landing gear all the way through the horizontal fuselage. The end should be flush with the top of the horizontal fuselage. If it is difficult to insert both landing gear legs through the landing gear support, use a hobby knife to enlarge the hole slightly. Rotate the wheels so that they are parallel to each other. Apply foam-safe CA to the joint between the landing gear support and the landing gear legs and the horizontal fuselage and the landing gear legs.

3. Place a small piece of loop (soft) side of the self adhesive hook and loop material to the back of the ESC and the receiver.

4. Place a piece of hook (rough) material under the fuselage, close to the front. Route the motor leads through the fuselage and connect them to the motor. Attach the ESC to the hook material.
5. Connect the servos to the receiver so that the wires do not interfere with any of the pushrods. Note that holes have been provided to route the elevator and aileron servo wires to the bottom right side of the fuselage.

6. Position the receiver under the horizontal fuselage as far aft as possible. Make sure the servo wires do not interfere with the pushrods. Apply a piece of hook material on the bottom of the horizontal fuselage, at the receiver location. Attach the receiver to the fuselage. To prevent the wires from interfering with the pushrods, use a small piece of tape to attach them to the fuselage.

7. Install the propeller on the motor following the motor instructions.

Hint: The rubber o-ring can be difficult to stretch over the screw, then the propeller and over the other screw. A small jewelers phillips head screwdriver can be used to pry the rubber o-ring over the screws and propeller. Be careful not to allow the screwdriver to slip and damage the windings inside the motor.

BALANCE THE MODEL (C.G.)

More than any other factor, the C.G. (center of gravity/balance point) can have the greatest effect on how a model flies and could determine whether or not your first flight will be successful. If you value your model and wish to enjoy it for many flights, DO NOT OVERLOOK THIS IMPORTANT PROCEDURE. A model that is not properly balanced may be unstable and possibly unflyable.

Because the Citabria 3D Indoor EP ARF is an indoor lightweight plane, adding weight to balance the plane is not an option. At this stage the model should be in ready-to-fly condition with all of the components in place except the motor battery. The motor battery will be moved forward and aft to balance the plane.

1. Use a fine-point felt tip pen to mark lines on the bottom of the wing, 1-15/16” [49mm] from the leading edge of the wing, on both sides of the fuselage. Apply narrow (1/16” [1.5mm]) strips of tape over the lines so you will be able to feel them when lifting the model with your fingers.

This is where your model should balance for the first flights. Later, you may experiment by shifting the C.G. 5/16” [8mm] forward or aft to change the flying characteristics. Moving the C.G. forward will improve the smoothness and stability, but the model will then be less aerobatic (which may be fine for less-experienced pilots). Moving the C.G. aft makes the model more maneuverable and aerobatic for experienced pilots. In any case, **start at the recommended balance point** and do not at any time balance the model outside the specified range.

2. Place the motor battery on the top of the fuselage aft of the recommended C.G. Lift the model from the bottom at the recommended C.G.

3. If the tail drops, the model is “tail heavy”. Move the motor battery forward to get the model to balance. If the nose drops, the model is “nose heavy”. Move the motor battery aft. Once you have determined the battery location required to balance the plane, note the location where the battery would need to be attached on the bottom of the horizontal fuselage.
4. Apply the remaining hook and loop material to the bottom of the horizontal fuselage at the approximate location for the motor battery. Attach an opposite piece of hook and loop material to the battery. Trial fit the motor battery to the bottom of the fuselage and recheck the C.G.

GET THE MODEL READY TO FLY

Check the Control Directions

1. Remove the propeller and switch on the transmitter and connect the motor battery. Check all the control surfaces to see if they are centered.

4-CHANNEL RADIO SET UP (STANDARD MODE 2)

- RUDDER MOVES RIGHT
- RIGHT AILERON MOVES UP
- LEFT AILERON MOVES DOWN
- FULL THROTTLE
- ELEVATOR MOVES DOWN

2. Make certain that the control surfaces respond in the correct direction as shown in the diagram. If any of the controls respond in the wrong direction, use the servo reversing in the transmitter to reverse the servos connected to those controls. Be certain the control surfaces have remained centered. Adjust if necessary.

3. Move the elevator up with your transmitter and move the ruler forward so it will remain contacting the trailing edge. The distance the elevator moves up from center is the “up” elevator throw. Measure the down elevator throw the same way.

4. Measure and set the **high and low rate** elevator throws and the high, low, and 3D rate throws for the rest of the control surfaces the same way.

If your radio does not have dual rates, we recommend setting the throws at the high rate settings.

NOTE: The throws are measured at the **widest part** of the elevators, rudder and ailerons.

Set the Control Throws

To ensure a successful first flight, set up your Citabria 3D according to the control throws specified in this manual. The throws have been determined through actual flight testing and accurate record-keeping, allowing the model to perform in the manner in which it was intended. If, after you have become accustomed to the way the Citabria 3D flies, you would like to change the throws to suit your taste, that is fine. However, too much control throw could make the model too responsive and difficult to control, so remember, “more is not always better.”

1. Use a box or something similar to prop up the bottom of the fuselage so the horizontal stabilizer and wing will be level.

2. Measure the 3D elevator throw first. Hold a ruler vertically on your workbench against the widest part (front to back) of the trailing edge of the elevator. Note the measurement on the ruler.
These are the recommended control surface throws:

<table>
<thead>
<tr>
<th>Control Surface</th>
<th>LOW RATE</th>
<th>HIGH RATE</th>
<th>3D RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up & Down</td>
<td>1-1/4"</td>
<td>1-5/8"</td>
<td>2-1/8"</td>
</tr>
<tr>
<td></td>
<td>[32mm]</td>
<td>[41mm]</td>
<td>[54mm]</td>
</tr>
<tr>
<td></td>
<td>25 deg</td>
<td>33 deg</td>
<td>45 deg</td>
</tr>
<tr>
<td>RUDDER</td>
<td>Right & Left</td>
<td>Right & Left</td>
<td>Right & Left</td>
</tr>
<tr>
<td></td>
<td>1"</td>
<td>1-5/8"</td>
<td>2"</td>
</tr>
<tr>
<td></td>
<td>[25mm]</td>
<td>[41mm]</td>
<td>[51mm]</td>
</tr>
<tr>
<td></td>
<td>17 deg</td>
<td>29 deg</td>
<td>36 deg</td>
</tr>
<tr>
<td>AILERONS</td>
<td>Up & Down</td>
<td>Up & Down</td>
<td>Up & Down</td>
</tr>
<tr>
<td></td>
<td>3/4"</td>
<td>1-3/8"</td>
<td>2-3/8"</td>
</tr>
<tr>
<td></td>
<td>[19mm]</td>
<td>[35mm]</td>
<td>[60mm]</td>
</tr>
<tr>
<td></td>
<td>14 deg</td>
<td>27 deg</td>
<td>52 deg</td>
</tr>
</tbody>
</table>

Balance Propellers

Carefully balance your propeller and spare propellers before you fly. An unbalanced prop can be the single most significant cause of vibration that can damage your model. Vibration of props on small models can cause a loss of power, but vibration may also damage your radio receiver, battery and possibly the motor bearings.

We use a Top Flite® Precision Magnetic Prop Balancer (TOPQ5700) in the workshop and keep a Great Planes Fingertip Prop Balancer (GPMQ5000) in our flight box.

Identify Your Model

No matter if you fly at an AMA sanctioned R/C club site or if you fly somewhere on your own, you should always have your name, address, telephone number and AMA number on or inside your model. It is required at all AMA R/C club flying sites and AMA sanctioned flying events (except when flown indoors). Fill out the identification tag on page 19 and place it on or inside your model.

Charge the Batteries

Follow the battery charging instructions that came with your radio control system to charge the batteries. You should always charge your transmitter batteries the night before you go flying, and at other times as recommended by the radio manufacturer.

Ground Check and Range Check

Always ground check the operational range of your radio before the first flight of the day following the manufacturer’s instructions that came with your radio. This should be done once with the motor off and once with the motor running at various speeds. If the control surfaces do not respond correctly, **do not fly!** Find and correct the problem first. Look for loose servo connections or broken wires, corroded wires on old servo connectors, poor solder joints in your battery pack or a defective cell, or a damaged receiver crystal from a previous crash.

MOTOR AND BATTERY SAFETY PRECAUTIONS

Failure to follow these safety precautions may result in severe injury to yourself and others.

Do not run the motor in an area of loose gravel or sand; the propeller may throw such material in your face or eyes. Keep your face and body as well as all spectators away from the plane of rotation of the propeller as you start and run the motor.

Keep these items away from the prop: loose clothing, shirt sleeves, ties, scarfs, long hair or loose objects such as pencils or screwdrivers that may fall out of shirt or jacket pockets into the prop.

The motor can get hot! Do not touch it right after operation. Once the motor battery is plugged into the ESC, stay clear of the propeller. The motor could start at any time.
LITHIUM BATTERY HANDLING AND USAGE

WARNING!! Read the entire instruction sheet included with your battery. Failure to follow all instructions could cause permanent damage to the battery and its surroundings, and cause bodily harm!

ONLY use a LiPo approved charger. NEVER use a NiCd/NiMH peak charger.
NEVER charge in excess of 4.20V per cell.
ONLY charge through the “charge” lead. NEVER charge through the “discharge” lead.
NEVER charge at currents greater than 1C.
ALWAYS set the charger’s output volts to match the battery volts.
ALWAYS charge in a fireproof location.
NEVER trickle charge.
NEVER allow the battery temperature to exceed 150° F (65° C).
NEVER disassemble or modify the pack wiring in any way or puncture the cells.
NEVER discharge below 2.5V per cell.
NEVER place the battery or charger on combustible materials or leave it unattended during charge or discharge.
ALWAYS KEEP OUT OF THE REACH OF CHILDREN.
NEVER charge the battery in the plane.
ALWAYS remove the battery from the plane after a crash. Set it aside in a safe location for at least 20 minutes. If the battery is damaged in the crash it could catch fire.

If the battery starts to swell, quickly move the battery to a safe location, preferably outside: Place it in a bucket, covering the battery with sand.

AMA SAFETY CODE

Read and abide by the following excerpts from the Academy of Model Aeronautics Safety Code. For the complete Safety Code refer to Model Aviation magazine, the AMA web site or the Code that came with your AMA license.

General

1) I will not fly my model aircraft in sanctioned events, air shows, or model flying demonstrations until it has been proven to be airworthy by having been previously, successfully flight tested.

2) I will not fly my model aircraft higher than approximately 400 feet within 3 miles of an airport without notifying the airport operator. I will give right-of-way and avoid flying in the proximity of full-scale aircraft. Where necessary, an observer shall be utilized to supervise flying to avoid having models fly in the proximity of full-scale aircraft.

3) Where established, I will abide by the safety rules for the flying site I use, and I will not willfully and deliberately fly my models in a careless, reckless and/or dangerous manner.

4) I will not fly my model unless it is identified with my name and address or AMA number, on or in the model. Note: This does not apply to models while being flown indoors.

5) I will not fly models with pyrotechnics (any device that explodes, burns, or propels a projectile of any kind).

Radio Control

1) I will have completed a successful radio equipment ground check before the first flight of a new or repaired model.

2) I will not fly my model aircraft in the presence of spectators until I become a qualified flyer, unless assisted by an experienced helper.

3) At all flying sites a straight or curved line(s) must be established in front of which all flying takes place with the other side for spectators. Only personnel involved with flying the aircraft are allowed at or in front of the flight line. Intentional flying behind the flight line is prohibited.

4) I will operate my model using only radio control frequencies currently allowed by the Federal Communications Commission.

5) I will not knowingly operate my model within three miles of any pre-existing flying site except in accordance with the frequency sharing agreement listed [in the complete AMA Safety Code].

9) Under no circumstances may a pilot or other person touch a powered model in flight; nor should any part of the model other than the landing gear, intentionally touch the ground, except while landing.

CHECK LIST

During the last few moments of preparation your mind may be elsewhere anticipating the excitement of the first flight. Because of this, you may be more likely to overlook certain checks and procedures that should be performed before the model is flown. To help avoid this, a check list is provided to make sure these important areas are not overlooked. Many are covered previously in the instruction manual, so where appropriate, refer to the manual for complete instructions. Be sure to check the items off as they are completed (that’s why it’s called a check list).
CAUTION (THIS APPLIES TO ALL R/C AIRPLANES):
If, while flying, you notice an alarming or unusual sound such as a low-pitched “buzz,” this may indicate control surface flutter. Flutter occurs when a control surface (such as an aileron or elevator) or a flying surface (such as a wing or stab) rapidly vibrates up and down (thus causing the noise). In extreme cases, if not detected immediately, flutter can actually cause the control surface to detach or the flying surface to fail, thus causing loss of control followed by an impending crash. The best thing to do when flutter is detected is to slow the model immediately by reducing power, then land as soon as safely possible. Identify which surface fluttered. Make certain all pushrod linkages are secure and free of play. If it fluttered once, under similar circumstances it will probably flutter again unless the problem is fixed. Some things which can cause flutter are: Excessive hinge gap; Not mounting control horns solidly; Excessive free play in servo gears; Insecure servo mounting; and one of the most prevalent causes of flutter; Flying an over-powered model at excessive speeds.

Takeoff
The Citabria 3D can take off from a smooth surface (ROG) or can be easily hand-launched. If you want to perform an (ROG) takeoff, make sure the surface you are using is free of holes that can flip the plane over or break the landing gear. Rise-off-ground (ROG) takeoffs should be reserved for indoor flying and should be performed with the model rolling away from you and others. For the first flight set the controls to low rate. If for the first flight the plane is to be hand-launched, have an assistant hand launch it. This will allow you, the pilot, to have both hands on the control sticks to make any flight corrections if the plane is out of trim. Once the Citabria 3D has been flown and trimmed out, you will be able to hand launch the plane easily by yourself. If you are flying outdoors, always takeoff into the wind.

Flight
For reassurance and to keep an eye on other traffic, it is a good idea to have an assistant on the flight line with you. While full throttle is usually desirable for takeoff, the Citabria 3D will fly great at ½ to ¼ throttle indoors.

Take it easy with the Citabria 3D for the first few flights, gradually getting acquainted with it as you gain confidence. Adjust the trims to maintain straight and level flight. After flying around for a while, and while still at a safe altitude with plenty of battery power remaining, practice slow flight and execute practice landing approaches by reducing the throttle to see how the model handles at slower speeds. Add power to see how it climbs as well. Continue to fly around, executing various maneuvers such as gentle rolls, loops, stalls and hammerheads, making mental notes (or having your assistant write them down) of what trim or C.G. changes may be required to fine tune the model so it flies the way you like. Mind your battery power. It is best to have a timer set to alert you when it is time to land.

Landing
To initiate a landing approach, lower the throttle while on the downwind leg. Allow the nose of the model to pitch downward to gradually bleed off altitude. Continue to lose altitude, but maintain airspeed by keeping the nose down as you turn onto the crosswind leg. You will notice that the plane bleeds off speed very quickly if the nose is raised with power off. Make your final turn toward the landing area, keeping the nose down to maintain airspeed and control. Level the attitude when the model reaches the edge of the landing area, modulating the throttle as necessary to maintain your glide path and airspeed. If you are going to overshoot, smoothly advance the throttle (always ready on the right rudder to counteract torque) and climb out to make another attempt. When you’re ready to make your landing flare and the model is a foot or so off the deck, smoothly increase up elevator. You may also have to blip the throttle until it gently touches down.

One final note about flying your model. Have a goal or flight plan in mind for every flight. This can be learning a new maneuver(s), improving a maneuver(s) you already know, or learning how the model behaves in certain conditions (such as on high or low rates). This is not necessarily to improve your skills (though it is never a bad idea!), but more importantly so you do not surprise yourself by impulsively attempting a maneuver and suddenly finding that you’ve run out of time, altitude or airspeed. Every maneuver should be deliberate, not impulsive. For example, if you’re going to do a loop, check your altitude, remember to throttle back at the top, and make certain you are on the desired rates (high/low rates). A flight plan greatly reduces the chances of crashing your model just because of poor planning and impulsive moves. Remember to think.

Have a ball! But always stay in control and fly in a safe manner.

GOOD LUCK AND GREAT FLYING!
<table>
<thead>
<tr>
<th>This model belongs to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>City, State, Zip</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phone Number</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AMA Number</td>
</tr>
</tbody>
</table>