

Flybarless Control Gyro CGY750 INSTRUCTION MANUAL

TABLE OF CONTENTS

Introduction	
Warranty and Repair Service (in U.S.A.)	2
• Features	2
Contents	
Precautions	
• Specifications	3
Replacement and Optional Items	4
Gyro Sensor Installation	4
Connecting the CGY750	5
• TX Set-up	6
Governor Installation	6
Governor Fuselage Setting Precautions	
• First Map	7
Opening Screen	
• Home Screen	
Warning Display	
• Setting Menus	9
• S.BUS Basic Setting	10
Swash Servo Installation and Setup	11
Aileron/Elevator Gyro Setup	11
Swash Basic Setting	12
Swash Detail Setting	14
Linkage Compensation	
Flight Tuning Setting	16
Tail Rotor Gyro Set Up and Rudder Basic Setting	17
Governor Basic Setting	18
Governor Speed Setting	20
Governor Operation	20
Recommended Gyro Gain Settings	
Before Flight Checklist	20
Adjustments During the Test Flight	20
Tunning Guidelines for CGY750	
• Tips for Using the CGY750 Governor with Electric Models -	
Flight Tune Expert Setting	
Rudder Gyro Expert Setting	22
Governor Expert Setting	22
Condition Menu	
• CGY750V2-3D-MAP	
• CGY750V2-F3C-MAP	
• F3C Style Tuning Section	
• FSC Style Tulling Section	30
Gyro : Instructions for gyro functions	
Governor : Instructions for governor functions	
echnical updates and additional programming examples can be	found

www.futaba-rc.com/faq

The Futaba[®] CGY750 is a combined 3-axis heading hold AVCS gyro and head speed governor in one box. Its cutting-edge MEMS (Micro Electro Mechanical System) sensor design, ultra high-speed processing speed and advanced PID control algorithm put it a quantum leap ahead of all other heading hold gyros in size, weight and performance. The CGY750 has been optimized to work for flybarless helicopters.

WARRANTY & REPAIR SERVICE (IN U.S.A.)

If any difficulties are encountered while setting up or operating your CGY750, please consult the instruction manual first. For further assistance you may also refer to your hobby dealer or contact the Futaba Service Center at the web site, fax or telephone number listed below:

www.futaba-rc.com or www.hobbyservices.com Fax (217)-398-7721, Tel (217) 398-0007

If you are unable to resolve the issue, pack the system in its original container with a note enclosed and a thorough, accurate description of the difficulty. Include the following in your note:

- Symptoms (including when the problem occurred)
- System (Transmitter, Receiver, Servos and model numbers)
- Model (Model name)
- Model numbers and quantity
- Your Name, Address and Telephone number

Send the respective items to the authorized Futaba Service Center Address below:

Futaba Service Center 3002 N Apollo Drive Suite 1 Champaign, IL 61822

FEATURES

· Combined 3-Axis Gyro and Governor in one box.

- High speed operation and extremely low latencies result in greater stability.
- Low profile, small size and light weight.
- Small size of the gyro and governor controller, 44 x 29 x 12mm, 13 g
- Utilizes a 128 x 36 dots graphical white color OLED (Organic Light Emitting Display), high brightness and contrast even in direct sunlight.
- Settings divided into Basic and Expert menus. The basic setting is for initial setting and Expert setting is for more advanced settings.
- Firmware can be updated from a Windows based personal computer when used with the optional CIU-2 interface.
- •S.BUS compatible. Only one connection is necessary between the S.BUS receiver and CGY750 control box for operation.

• Gyro section

- Advanced and adaptive PID control loop is utilized
- Small and low profile 3-axis gyro sensor. 21 x 21 x 8.5mm, 8g Rudder (yaw) section:
- Capable of sensing angular velocity up to +/- 1,200 deg/sec.
- Compatible with 1520µS Analog (70Hz), 1520µS Digital (280Hz), and 760µS Digital (560Hz) tail rotor servos.
- · 3D and Sports flight mode
- Feed Forward Option allows the CGY750 to consider other control functions during operation. This results in more accurate corrections and precise operation.
- Cutting edge control algorithm provides a consistent pirouette rate, precise operation, and smooth yaw control in any flight condition.

Aileron, Elevator (roll, pitch) section:

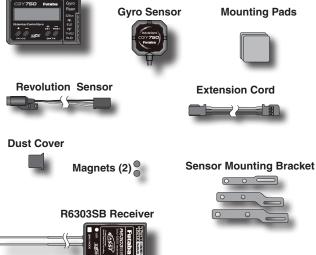
- · Developed specifically for flybarless helicopters.
- Included preset parameters for helicopter types (450-550, 600-700, and 750+) along with control feel preset parameters make initial setup as easy as pressing a button.
- Supports H3-120, H3-140, H3-90, H4-00, and H4-45 swashplate types.

Governor section

- Advanced and adaptive PID control loop is utilized.
- High speed operation and extremely low latencies provide a more consistent and accurate operation.
- · Capable of governing head speeds from 700 RPM through 4000 RPM
- \bullet Compatible with 1520 μS Analog (70Hz) and 1520 μS Digital (280Hz) throttle servo types.
- Feed Forward Option allows the CGY750 to consider other control functions during operation. This results in precise governing of the head speed.
- Governor or Revolution Limiter mode selectable.
- Supports gear ratios from 1.00 through 50.00.
- Cutting edge control algorithm provides more consistent RPM governing.
- Revolution sensor is compatible with the GV-1. The CGY750 also supports a optional back plate revolution sensor and brushless phase sensor.

• Other functions

- Maximum RPM memory.
- Cumulative engine operation timer.
- Power saving OLED.


CONTENTS

Your CGY750 includes the following components:

<i>Type of set</i> • Gyro & Governor set w/R6303SE	3 —			7
Gyro & Governor set				
• Gyro set w/R6303SB				
Gyro set				
SET CONTENTS	↓	•	•	•
CGY750 Control Amp *Mini Screwdriver *Dust Covers (x3)	x	х	x	x
Gyro Sensor *Mounting Pads (x3)	х	х	х	х
Revolution Sensor *Sensor Mounting Hardware *Magnet (x2)			x	x
R6303SB Receiver		х		х
Extension Cord	х	х	х	х

X: supplied ---: not supplied

CGY750 Control Box

Meaning of Special Markings

Pay special attention to safety where indicated by the following marks:

DANGER - Procedures which may lead to dangerous conditions and cause death/serious injury if not carried out properly.

WARNING - Procedures which may lead to a dangerous condition or cause death or serious injury to the user if not carried out properly or procedures where the probability of superficial injury or physical damage is high.

CAUTION - Procedures where the possibility of serious injury to the user is small, but there is a danger of injury, or physical damage, if not carried out properly.

S : Prohibited **●** : Mandatory

Failure to follow these safety precautions may result in severe injury to yourself and others.

• Read through the entire manual before operating this product. **BEFORE EACH FLIGHT:**

• Always check the transmitter and receiver battery voltage to ensure they have enough remaining capacity to complete the flight.

• Always exit programming mode before attempting to fly the model.

● Only use the CGY750 with a 2.4GHz system such as the Futaba FASST[™] system, or a PCM system. Use with an FM system is strongly discouraged since interference can cause serious operational problems.

Gyro operating precautions: Gyro

◎ The CGY750 requires 5-10 seconds to initialize when the power is turned on. Do not move the helicopter and do not move the tail rotor, aileron and elevator sticks during this initialization or the gyro may not initialize properly. Once the initialization process has been completed the swash servos and tail servo will move several times indicating that the CGY750 is now ready for flight.

• Verify that the gyros are operating and compensating in the correct direction before each flight. If the compensation direction is incorrect on any axis the model will become uncontrollable after takeoff.

• Verify that the gyro is operating in the desired mode.

Verify that the gyro mounting pads are in good condition.

• Verify that the gyro wires are not contacting the frame of the helicopter.

• The servo type parameters within the CGY750 must match the type of servo you are using. Incorrect setting may damage the CGY750 or the servos, possibly resulting in a loss of control during flight.

● Always ensure that there is some slack in the gyro cables to help maximize performance. Always use the supplied gyro mounting pads to attach the gyro to the helicopter mechanics. Do not use a strap that encompasses the CGY750 sensor. This may affect the overall performance of the gyro.

• Always allow the gyro to adjust to the surrounding environmental temperature before flight. A large temperature change during use will cause drift and other operational issues.

 \otimes The gyro sensor and control box have a electroconductive coating. Do not allow any power leads or other wiring to come into contact with these items.

● If you are switching between Normal Mode and AVCS Mode in flight, please keep in mind that you must have the gyro re-learn the center position after making a trim change within the transmitter. To memorize the new center position simply flip the gain switch on the transmitter three times between Normal Mode and AVCS Mode (Normal→AVCS→Normal→AVCS) within one second. The servo will center indicating that the new center position has been memorized.

• When operating the gyro in AVCS Mode, all compensation and revolution mixing must be disabled and any tail rotor or swash offsets for flight modes must be disabled.

• When the CGY750 is operated in AVCS mode the tail rotor or swashplate servos will not center when tail rotor, aileron or rudder stick is released. This is normal operation for AVCS mode. The servos may also move to the extent while the model is being carried out to the flight line. Before take off, you must visually center the tail rotor pitch slider and level the swash plate by using the transmitter control sticks. You can also center the servos by moving the tail rotor stick full left, then full right, back to full left and then allow the stick to center within one second; the same method applies for aileron and elevator servos.

 \odot Do not drop the CGY750 sensor onto a hard surface or subject the CGY750 sensor to a strong shock as this may damage the sensor.

Always use the supplied mounting pads or the Futaba replacement mounting pads available from your local Futaba dealer.

Governor operating precautions: Governor

When the throttle servo is connected to the CGY750, the battery failsafe function within the CGY750 must be setup and enabled.

● Throttle fail safe function (transmitter setting): Use the fail safe function for the channel that turns the governor on and off to set the fail safe position to the point at which the governor is turned off. With this setting, when the system enters the fail safe state, the governor will be turned off, and the receiver throttle signal (fail safe position preset) will be output directly.

• When using the condition hold function on the transmitter, always set the throttle servo maximum operating point to less than the point at which the governor is activated. If this is not done the governor may activate while in condition hold.

• While preparing for flight or starting the engine, always ensure the throttle remains below the governor activation point and do not select any flight modes that may activate the governor.

If you prefer to activate the governor while the model is still on the ground, always ensure that you have at least -5 degrees of pitch in the model before activating the governor. This negative pitch is necessary to prevent an unexpected lift off as the governor activates and the head speed increases to the desired RPM.

Periodically check the RPM sensor output to ensure proper governor operation. Due to the high level of vibration and centrifugal forces the magnet may come loose or the sensor alignment may change. Every 10th flight verify that the magnet and sensor are properly mounted.

Width (Controller):	
(Gyro sensor):	0.83in [21mm]
(Revolution sensor):	0.30in [7.5mm]
Length (Controller):	1.73in [44mm]
(Gyro sensor):	0.83in [21mm]
(Revolution sensor):	0.63in [16mm]
Height (Controller):	0.47in [12mm]
(Gyro sensor):	0.33in [8.5mm]
(Revolution sensor):	0.39in [10mm]
Weight (Controller):	0.459oz [13g]
(Gyro sensor):	0.282oz [8g]
(Revolution sensor):	0.141oz [4g]
Operating Voltage:	3.8V to 8.4V DC*
Current Drain:	70mA
Selectable Servo Frame:	70Hz, 280Hz and 560Hz
	(Rudder Gyro only) Rate
Center Pulse Width:	1520µS (70Hz & 280Hz)
	760µs (560Hz)
Governor Resolution:	0.1Hz (6rpm)
	(Engine RPM)
RPM Accuracy:	1%
Head Speed Range:	
Operating Temperature:	
	(-10°C to +45°C)
	Digital advanced control
Sensor:	Micro Electromechanical
	Systems (MEMS) Gyro
	Hall effect sensor
Angular Velocity Range:	, .
	Second (Gyro)

* The operating voltage shown only applies to the CGY750. Always verify that your receiver, servos, tail rotor servo, switch and any other electronic components used in your installation are capable of operating at the voltage you plan to use.

REPLACEMENT & OPTIONAL ITEMS

Futaba PC Interface CIU-2: FUTM0951

Extension 200 mm: Extension 350 mm: Extension 55 mm: Extension 80 mm: Extension 130 mm:

Mounting Pad: 1x22x22 mm (10)

• Newer high end servos and other radio equipment are capable of placing large demands on the power systems in use today. When using a regulator you must ensure that the regulator is capable of supplying the current demands of the equipment you have selected. In addition to this make sure the wiring and switch you have selected are capable of handling high current draws.

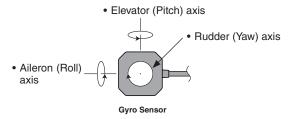
 The servo current draw can be up to 50% higher on a flybarless helicopter. Always ensure your receiver battery is fully charged before each flight.

• Even though the CGY750 is a high performance gyro and governor, it will be necessary to ensure that the helicopter mechanics are also in optimum operating condition. Please use the guidelines below and address all issues before installing and flying the CGY750.

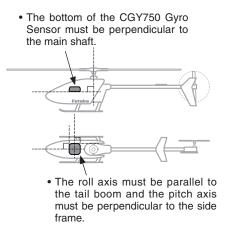
- The CGY750 must be used with a rigid tail rotor drive system. Any modern torque tube or belt drive system should be adequate. Do not attempt to fly the CGY750 using a wire driven tail rotor system.
- Always ensure the drive gears, torque tube, pulleys, belt, bearings and shafts are in proper working condition. If any of these items are damaged or worn they must be replaced.
- The linkage rod, tail rotor bell crank, pitch slider and tail rotor grips must operate without friction to obtain the best performance from the CGY750. Binding in the tail rotor control linkage will decrease the performance of the CGY750 gyro and this may also shorten the servo lifespan. Please take the time now to ensure the tail rotor system on your helicopter is working correctly and without friction or binding.
- Vibration will affect the CGY750's overall performance. All rotating components on the helicopter should be balanced to minimize vibrations in flight. Ensure that your engine or electric motor is running smoothly and that all vibrations have been addressed before installing and test flying the CGY750.

Gyro sensor replacement:

 Each CGY750 gyro control box is calibrated specifically for the gyro sensor included. Do not attempt to use another CGY750 sensor with the control box as performance will suffer due to being out of calibration. The calibration process must be completed by an authorized service center.

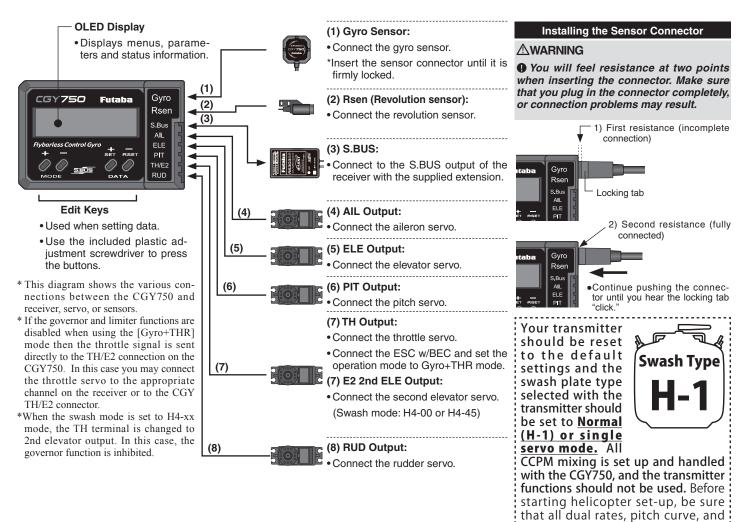

If your sensor needs replacement, please send the complete unit to your region's support center for repair.

GYRO SENSOR INSTALLATION


The gyro sensor should be mounted on a rigid platform, at least 6in [152mm] away from a Nitro Engine. It is not necessary to mount the gyro near the main shaft of the helicopter but it is very important that the mounting area chosen is rigid. Please refer to your helicopter manufacturer's instructions for recommended mounting locations.

Test fit the gyro sensor, ensuring that the sensor is in perfect alignment with the helicopter on the roll and pitch axis. The cable from the gyro sensor must exit toward the front or the rear of the helicopter since this is the pitch axis. Any misalignment will cause a loss of performance, so it is very important to ensure that everything is aligned properly.

Once you are certain everything is properly aligned and that the sensor lead can be routed to the gyro, go ahead and mount the gyro sensor to the helicopter using one of the supplied gyro pads. Route the gyro sensor lead to the CGY750 control box and plug the lead into the gyro sensor port. Verify that the connector is firmly locked in place.


Important: The CGY750 gyro sensor must be mounted so that the roll and pitch sensing axis are in alignment with the helicopter. Any misalignments over 1/2 of a degree will cause a loss in performance. Please take extra care in this step to ensure the optimum flight performance.

TROUBLESHOOTING

If any issues are noted during flight (such as drifting, inconsistent hold or inconsistent control rates) then please review the following troubleshooting recommendations.

- 1. Always verify that the tail rotor and swash plate mechanisms operate, and that the drive system is in proper working order.
- Electromagnetic interference could be causing the problem. If you feel everything is set up correctly and that the helicopter is vibration free, then consider moving the gyro sensor to a new location away from servos, ESC and drive motors.
- 3. Vibrations will decrease the performance of all gyro systems. Even though the CGY750 gyro sensor is the most vibration resistant gyro sensor available, eliminating vibrations will always improve performance. Throughout extensive testing it has been found that the CGY750 gyro sensor performs best when the sensor is mounted rigidly to the airframe. This is mainly due to the sensing of all 3 axes. It is highly recommended to avoid using soft foam pads as this may allow the gyro to bounce around on the roll and pitch axis, causing instabilities and possible loss of control during flight.

Connection to the receiver, servos and sensors

The CGY750 requires an S.BUS receiver or the optional PWM Receiver to S.BUS adapter available separately.

Using the supplied extension connect the S.BUS receiver port (or from the S.BUS PWM adapter) to the CGY750 S.BUS port. Install your receiver battery, regulator, switch and any other necessary electronics now. Connect the power lead of your switch / regulator to the battery connector on the receiver.

Plug the cyclic servos (AIL-[Aileron], ELE-[Elevator], PIT [Pitch], RUD [Tail Rotor] and if using the H4xx swash plate type TH/E2-[Elevator 2]) into the appropriate port on the CGY750.

Determine the best location to place the receiver and CGY750 control box. Mount the receiver and the CGY750 control box to the helicopter mechanics using vibration adsorbing self adhesive foam pads. The CGY750 gyro sensor will be installed in a later step.

Using wire mounts, wiring fixtures molded into the helicopter, or hook and loop material, route the servo leads and extensions. Make sure the wires are not rubbing against metal or carbon fiber which may damage the wires.

S.BUS channel setting

Since the S.BUS protocol uses a single wire to transmit all channel information to the CGY750 it is necessary to assign each channel number (1 through 16) a function (such as aileron, pitch, collective, gain, ail gain, ele gain, rpm, gv on/off) within the CGY750 control box. The default CGY750 S.BUS channel assignments should work properly with most Futaba transmitters. If you experience any problems please refer to the S.BUS section of the manual to set/verify each channel number for each function.

□ If your transmitter does not offer enough channels to operate all of the CGY750's functions, it is possible to operate the CGY750 without the GV On/Off, Ail Gain, and Ele Gain channels connected. When any these functions are not used, it is necessary to set the channel number to [INH] within the CGY750's S.BUS menu to disable the function and to use the setting value inside the CGY750 menu instead.

endpoint values are set to 100/100.

When the GV On/Off channel is not used, the governor on/off control is handled by the [Stick Switch] function.

When the remote Ail or Ele Gain channels are not used, the operating mode (NOR/AVCS) and gain value can be set in the appropriate AIL / ELE Basic menu option by using the Data +/- keys when the function is displayed.

Using the CGY750 with a electric helicopter

It is necessary to remove the pinion gear from the electric motor or disconnect the motor from the ESC before powering the model up for setup or bench testing. Electric motors are extremely powerful and capable of delivering the power instantly, causing injury to yourself, others, or the surroundings.

If the CGY750 is being installed into an electric helicopter and the ESC's own internal governor is to be used, you may want to consider connecting the ESC to the [TH/E2] (throttle / elevator 2) output of the CGY750. Before doing this you must remove the pinion gear from the electric motor or disconnect the motor from the ESC before powering the model up the first time. Once the model has been powered up, navigate to the gyro mode function and set it to [GYRO+THR]. This sets the CGY750 to act as a gyro and throttle output. The CGY750 will simply pass the throttle signal from the receiver through to the TH/E2 port on the CGY750.

Once your ESC is connected to the CGY750, you must complete all necessary transmitter setup (ATV / EPA / REV / ETC) per your ESC instructions. Please refer to the end of this manual for further suggestions for the use of the CGY750's governor with electric powered models.

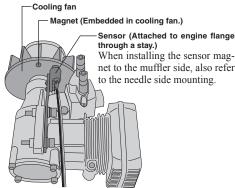
TX Set-up

Condition selection

Condition selection incorporates two adjustable values for a given parameter (displayed c1/c2). This is dictated by the digital channel number "1" within the Function Menu of your transmitter (DG1). Assigning DG1 to a switch or flight mode allows the use of two separate variables on the condition selectable parameters.

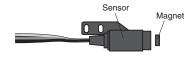
Rotor Head Gyro Gain "RotHd.Gn"

In the SBUS menu assigning "RotHd.GN" to a channel will allow the Rotor head gain to be adjusted via the TX. If you are using a 6CH or less TX, setting "RotHd.Gn" to "INH" will then default the gain to "BaseGain" in the Flight Tuning menu. Suggested setting and default is CH9.


Tail Rotor Gain "RGn"

In the SBUS menu assigning "RGn" to a free TX channel will allow for the tail rotor gain to be adjusted via the TX. Suggested setting and default is CH5.

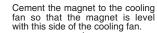
Note - Before starting helicopter set-up, be sure that all dual rates, pitch curve, and endpoint values are set to 100/100.

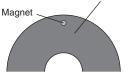

GOVERNOR INSTALLATION

Modify the cooling fan and install the accessory magnet and attach the magnetic sensor to the engine at the position shown below. Balance the cooling fan as needed following magnet installation.

Magnet operating side check

Bring the magnet near the end of the sensor and check the operating side.




This is the side at which the displayed value increases in the "Revolution sensor testing" menu within the "Governor Basic Setting" section earlier in this manual. Install the magnet with this side facing the sensor. Mark this side of the magnet with a felt tip pen.

Cooling fan modification

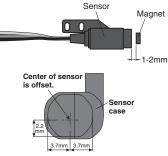
Drill a hole in the fan at the magnet mounting position. Make the hole about 4.1mm in diameter and 1.5 to 1.7mm deep.

Embed the magnet in this hole in the direction in which an output is obtained. Use epoxy adhesive that cures in 30 minutes or longer. Do not use epoxies that contain metal such as JB Weld.

If the cooling fan is unbalanced and vibrates, etc., balance it by mounting the spare magnet to the opposite side of the cooling fan in the opposite polarity (so that it does not output a signal).

Sensor mounting

The sensor mounting method depends on the helicopter and engine.


- □ Mount the sensor to the sensor stay. (Temporary assembly)
- Drill a hole in the fan cover at the part corresponding to the sensor so that the distance between the sensor and magnet can be made 1 to 2mm.
- Tighten the sensor stay together with the engine mounting flange. (Temporary assembly) Select the mounting method so that the sensor does not

- touch the frame, or other parts of the helicopter. Temporarily mount the sensor and select the magnet mounting position
- \Box Install the sensor to the sensor stay using the accessory screws and washers.
- Tighten the sensor stay together with the engine using the engine mount screw.

Sensor adjustment

Adjust the sensor position to obtain a sensor output of at least 60% in the "Revolution sensor testing" menu within the "Governor Basic Setting" section earlier in this manual.

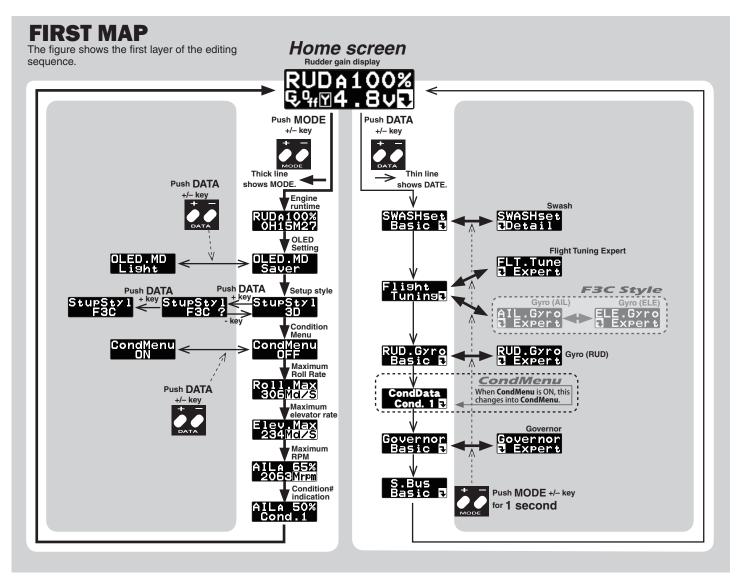
- The center of the sensor is different from the center of the sensor case so be careful when mounting the sensor.
 - If the display is less than 60% when the magnet is directly below the sensor, bring the sensor closer to the magnet so that the 60% or more is displayed. The magnet and sensor gap criteria is approximately 1 to 2mm. If a sensor output is not obtained even when the sensor is brought close to the magnet, the magnet and sensor center positions may have changed.
- Complete assembly of the sensor by securely tightening the screws that were temporarily tightened.
- Recheck the sensor output.

Governor FuseLage Setting Precautions

Throttle servo linkage precautions

To effectively use the governor, observe the following precautions when connecting the servo linkage.

- A Make the servo operating range as wide as possible. Make the throw of the transmitter EPA (ATV) function and AFR function as close as possible to 100%.
- □ Fly with the governor turned OFF and adjust the needle so that the engine smoothly reacts to movement of the transmitter stick.


If there is a point at which the reaction of the engine is considerably different due to a too rich or too lean mixture, the governor may not operate to its maximum potential.

Fuselage vibration countermeasures

If the helicopter frame is weak, or the engine mount is deformed or not installed properly, the vibrations applied by the engine will increase. Engine vibrations will lead to unstable speed and prevent the governor from providing maximum performance. Therefore, make sure that the engine is vibration free and that the carburetor provides linear throttle control because the governor cannot correct engine problems.

Use of a tuned silencer

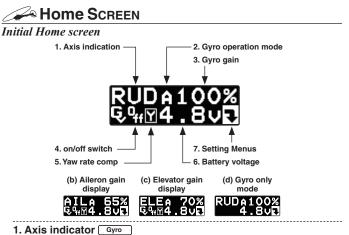
The use of a tuned pipe type silencer may cause the engine throttle response to be substantially different from that of a normal muffler. Adjust the needle (and pipe length) so that engine speed changes are proportional to the throttle opening. The governor will not perform satisfactorily with a muffler or a pipe that does not allow the carburetion to be linear.

OPENING SCREEN

Verify that all of the connections are correct between the CGY750, receiver, and power supply. If your helicopter is using an electric motor for propulsion, remove the pinion gear now for safety.

If this is the first time the helicopter has been powered up, remove the servo arms and linkages to prevent damaging the servos if any binding is present. Power up the transmitter and allow it to initialize. Turn the receiver on or connect the flight battery and allow the helicopter to remain motionless while the CGY750 initializes.

The display will first show the ID number of your CGY750 and the Firmware Version.



After the CGY750 has powered up the screen will change to show an animation of a helicopter performing a stationary flip. This indicates that the initialization process is taking place. The helicopter must remain perfectly still so the controller can determine the gyro's center position for each axis.

Once the initialization process has been completed the Home Screen will be displayed and the cyclic + tail rotor servos will move several times in quick succession.

If the CGY750 is set to the [Gyro+THR] mode or if the H4-xx swash plate type has been selected then the governor will be disabled and the screen will look like (d) below instead. The display will cycle through and show the current AIL, ELE and RUD gains.

The axis indicator will cycle every two seconds and show the axis (AIL, ELE or RUD) and their respective current gain values.

2. Gyro operation mode Gyro

The display indicates either [A] for AVCS or [N] for Normal operating modes. If the [A] is shown in inverted colors then the rudder neutral is offset and re-learning the center position should be completed immediately.

When using the AVCS operating mode, the servos will not re-center when the control stick is released. If you need to center the servo, you can move the appropriate control stick to its full extent (left & right or up & down) twice and allow the control stick to return to center within a one second period of time, and the servo(s) for that axis will return to center position.

For example if you move the tail rotor stick full left, full right, full left, full right and allow it to come back to center within one second, then the display will change to show [------], and the tail rotor servo will center.

When using the AVCS operating mode and if trim changes have been made on any axis, then the neutral position must be read and memorized by the CGY750. To do this simply change the operating mode twice within one second (for example Normal \rightarrow AVCS \rightarrow Normal \rightarrow AVCS) and the display will change to [*******] to indicate that the current stick position has been memorized as the new neutral position.

Read and memorize the current neutral position.

3. Gyro gain Gyro

This indicates the current gyro gain for the axis noted in the Axis Indicator position.

4. Operating condition Governor

This indicates whether the governor is [ON] or [OFF].

5. Yaw rate comp. Governor

This indicates that the Governor yaw feed forward function is enabled.

6. Battery voltage

This indicates the battery voltage. The display will change to show [LOW BAT] once the voltage has fallen below the Battery fail safe voltage setting (BFS).

7. Setting Menus

Pushing this button will exit the normal operating mode and enter the settings menu mode.

RPM display Governor

The battery voltage display automatically changes to the engine RPM display once the engine is running and returns to battery voltage display once the engine has stopped running. The RPM display can be either the head speed or the engine speed depending on the setting in the revolution display mode setting found in the governor Expert menu.

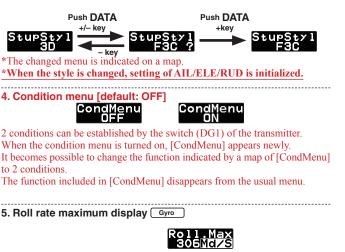
Home screen options

When the home screen is shown the mode [+] and [-] keys can be used to cycle the bottom line through the following items; Battery voltage, Max RPM, Engine runtime, OLED display options, Operating Mode, Roll rate maximum display, and Elevator rate maximum display.

	-										_																	
١.		:n	Ig	JIF	ne	r	u	πτ	In	ne	e	G	٥v	/er	no	r	Ē	I	IJ	D)	۵	ĭ	ľ	•	6	9	2	
																		()	H	1	Ē		V	2	Ľ.	2	

From the home screen press the mode [+] key twice to show the engine runtime display. The time shown is how long the engine has been running. This is a cumulative timer and the value is maintained in memory. To reset the timer simply press the data [+] or [-] key for more than one second and the timer will reset back to 0.

2. OLED display options [default: Saver] OLED.MD Saver Light


When the [Saver] option is selected, the display will dim after 60 seconds of inactivity. Once a button is pressed on the CGY750 controller box, the OLED will switch back to full brightness. The [Saver] option helps to conserve power and extend the life of the display. When the [Light] option is selected the display will remain at full brightness at all times.

3. Setup style

StupStyl F3C

3D Mode is a known configuration of parameters for 3D and F3C flying. F3C Mode is for Advanced F3C tuning only.

StupSt> 3D

This screen displays the maximum roll rate recorded during flight. This value is reset back to 0 when the CGY750 is powered up.

6. Elevator rate maximum display Gyro

This screen displays the maximum elevator rate recorded during flight. This value is reset back to 0 when the CGY750 is powered up.

7. Maximum RPM Governor

From the home screen press the mode [+] button once to show maximum recorded RPM [Mrpm]. The [Mrpm] value is maintained until you clear it by pressing the data [+] or [-] key for at least one second. This function allows you to check for over speeding during flight.

8. Condition

Current condition# is indicated.

WARNING DISPLAY

Governor warning display Governor

SensorER

The warning symbol is displayed when the governor is activated during power up. Immediately switch to a condition that has the governor disabled, and the symbol will disappear. When this warning symbol is shown, the governor will be disabled until the flight condition has been turned off. The engine must be started with the governor turned off.

Sensor Error Gyro

The helicopter must remain motionless during the initialization process or a [SensorER] sensor calibration error may occur.

If a sensor error occurs during initialization, the sensor itself may be defective.

Please contact your region's technical support center (the contact information can be found in the beginning of this manual). *Low battery*

● The [Low Batt] warning is displayed if the receiver battery voltage falls below the [BAT/FS] voltage set within the CGY750 Governor Expert menu. If this condition lasts for more than one second, then the Battery Fail Safe function activates, and the throttle servo is brought back to idle position. This is done to warn you that the battery voltage is dangerously low and that you must land immediately. The throttle operation can be temporarily reactivated by bringing the transmitter control stick all the way back to idle; normal throttle function will return. After 30 seconds the Battery Fail Safe function will activate again requiring you to repeat this process if necessary. The model should be landed as soon as possible.

Memory writing indicator

AIL.Dir Revers@

WARNING

 \bigotimes Do not power off the CGY750 when the Memory writing symbol is displayed.

When a setting is changed within the CGY750 the new value must be written to memory. The "Memory writing indicator" is displayed during this process. This process may take up to two seconds, and the power must not be switched off during this time.

If the power is switched off during the writing process, then all of the settings may be lost.

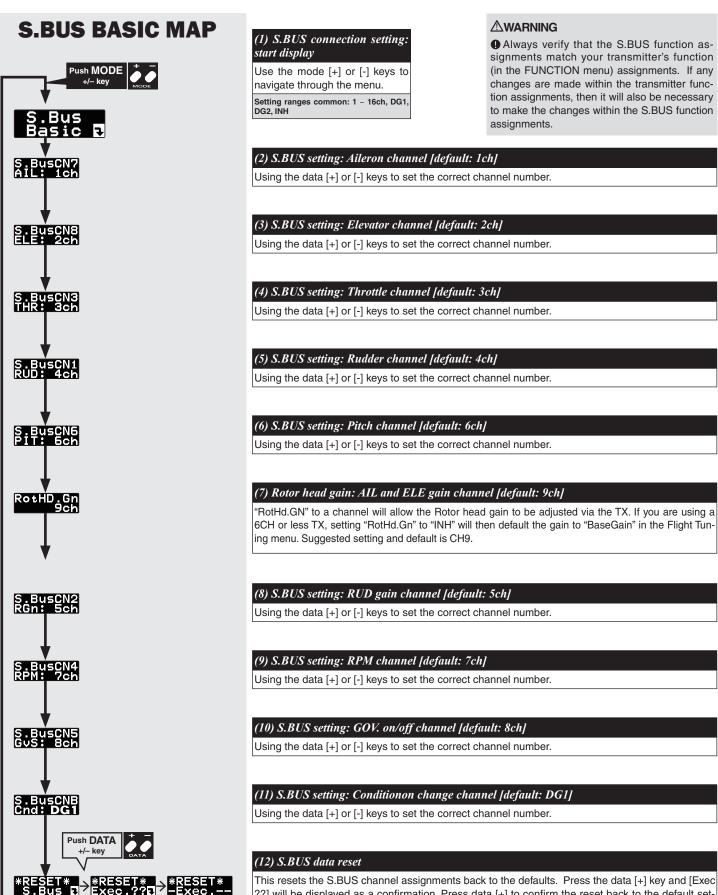
SETTING MENUS

● Always exit the Setting Menu and return to the home screen before flying your model. The gyro operation is disabled within several of the settings menus to ease set up.

① Always check the operation of the CGY750, verify that the controls are operating the correct direction and ensure the gyros are correcting in the proper direction for all axes prior to attempting to fly the model.

The data [+] and [-] keys are used to navigate through the Setting Menus: [RUD.Gyro], [AIL.Gyro], [ELE.Gyro], [SWASHset], [Governor]* and [S.BUS] Basic menus. Once the desired menu is shown press and release the mode [+] or [-] key to show the next or setting items respectively.

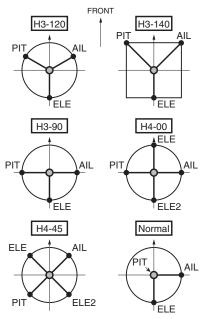
The expert menus are entered or exited by pressing and holding the mode [+] or [-] key for one second. To exit the current menu simply go back to the Basic Settings Menu for the function (for example, [AIL.Gyro - Basic]) and press and release the mode [+] or [-] key until the home screen is shown.


Please see the Setting Menus diagram for a complete listing of the Home Screen, Basic and Expert menus.

*The [Governor] setting menu is not displayed if the Operating Mode has been set to [Gyro+Thr] or if the swash plate type has been set to the H4 xx type.

S.BUS BASIC SETTING

Since S.BUS sends all 18 channels (may be limited by your transmitter) over a single wire, it is necessary to assign a CGY750 function (such as AIL, ELE or PIT) to each channel. The channel assignments are performed within the [S.BUS]. Basic menu.


If a function is not going to be used, then it must be set to [INH]. For example, if the AGN and EGN remote gain functions are not going to be used, then set them to [INH] and the CGY750 will then allow you to make gain adjustments within the respective menu.

This resets the S.BUS channel assignments back to the defaults. Press the data [+] key and [Exec ??] will be displayed as a confirmation. Press data [+] to confirm the reset back to the default settings.

Swash Servo Installation and Setup

The CGY750 supports 6 different swash plate types as shown below.

Swash Servo installation

- Determine which of the swash plate types shown match your helicopter and install the swash plate servos per the diagram and per your helicopter's instruction manual.
- □ Your transmitter should be reset to the default settings and the swash plate type selected with the transmitter should be set to Normal (H-1) or single servo mode. All CCPM mixing is set up and handled with the CGY750, and the transmitter functions should not be used. The expo function and dual rates can be used with the transmitter but everything related to the CCPM mixing should be set up and handled by the CGY750. Set your transmitter AFR, ATV and D/R (Swash functions) to 100% initially for setup, and all subtrims should be set to 0.
- Power up your transmitter and helicopter. Allow the CGY750 to initialize. Use the CGY750 [SWASHset Basic].
- □ Navigate to the Servo Type parameter on the CGY750 and select the servo type that matches your servo manufacturer's recommendations. If there is any doubt, select the analog servo type to prevent damaging the servos and check with your servo's manufacturer to determine the proper type.
- □ Navigate to the [SWASHset Basic] AIL.Ntr setting at this time. The AIL,ELE, or PIT.Ntr setting screens will each disable the gyros and cause the cyclic servos to remain in the center position. If you are using an electric motor, then it will be necessary to remove the pinion gear now or disconnect the motor from the ESC. Once you are certain that the drive motor cannot apply power to the main rotor blades, temporarily install servo arms onto the servos. Slowly move the collective stick towards positive collective and verify that each servo is moving the proper direction to increase collective pitch. If the servos do not move in unison to maintain a level swashplate with a collective pitch input, choose another servo combination option from the ServoDir Comb# menu.

Once the servos are operating in the correct direction for the collective control (positive and negative), the next step is to slowly move the collective stick to the center position (verify within your transmitter's servo Display or Monitor function if possible). This will be considered the 0 collective position for setup. Temporarily install the servo arms onto the cyclic servos and ensure that the servos are perfectly level. Small adjustments can be made using the [SWASHset Basic] \rightarrow AIL/ELE/PIT.Ntr adjustment for each servo if necessary. Mount the linkage ball onto the servo arm per your helicopter's instruction manual and install the servo if your servos have metal output gears.

□ Move the forward / aft cyclic stick forward and verify that the swash plate tilts forward. If the swash plate tilts the wrong direction, then it will be necessary to reverse the sign of the [SWASHset Basic] ELE.Dir parameter (for example +50 would become -50). Move the left / right cyclic stick to the right and verify that the swash plate tilts to the right. If the swash plate tilts left, then reverse the sign of the [SWASHset Basic] AIL.Dir parameter.If the collective pitch movement is opposite to the transmitter input (positive stick input yields negative collective on the model), reverse the direction using SWS.Dir PIT.

As a final check, verify that the swash plate moves in the proper direction per your stick movements for the roll, pitch and collective functions.

□ Navigate to the [SWASHset Basic] → SWS.Rate parameter. This will disable the gyros and cause the servos to remain centered during set up. Using a pitch gauge, ensure that the swash plate is perfectly level and that the main rotor blades are at 0 degrees pitch when the collective stick is centered. Make any mechanical adjustments as needed to achieve 0 degrees of pitch on both main rotor blades.

Rotate the main rotor blade with the pitch gauge so that it is aligned with the tail boom. Apply full right cyclic on the transmitter and measure how much pitch is on the blade. At least 9 degrees of cyclic pitch should be set. Adjust the value of the [SWASHset] \rightarrow Basic \rightarrow SWS.Rate parameter until at least 9 degrees of cyclic pitch is achieved.

OR.....Rotate the main rotor blade so that it is perpendicular to the tail boom and apply full aft cyclic. Adjust the [SWASHset] \rightarrow Basic \rightarrow SWS. Rate parameter until at least 9 degrees of cyclic is achieved.

Using the pitch gauge, adjust the collective range per your preference or per your helicopter's instruction manual.

All of the AFR, ATV and D/Rs for the cyclic and collective functions within the radio should be set to 100%. At this point the basic setup is complete, but it is necessary to set up the gyros and compensation directions before attempting to fly the model.

Navigate to the AGy.Dir and EGy.Dir parameters in the [Swashset Basic] menu.

These parameters control which direction the CGY750 (roll / pitch axis) will compensate when the helicopter rolls (pitches). Pick the helicopter up and roll the helicopter to the right. The CGY750 should compensate by adding left cyclic to the swash plate. (Pick the helicopter up and rotate the nose of the helicopter downward. The CGY750 should compensate by adding aft cyclic to the swash plate.) If the CGY750 compensates in the wrong direction, reverse the Compensation Direction setting by pressing the DATA [+] or [-] key once.

□ Check the cyclic and collective movements for interactions and if any are noted please refer to the Swash Plate Adjustment (Linkage Compensation) procedure listed within the back of this manual. When using modern digital servos and with a proper setup, adjustments required will be minimal if any at all. Sometimes mechanical design flaws or mistakes within the setup will cause interactions, and it is best to remove these before flight.

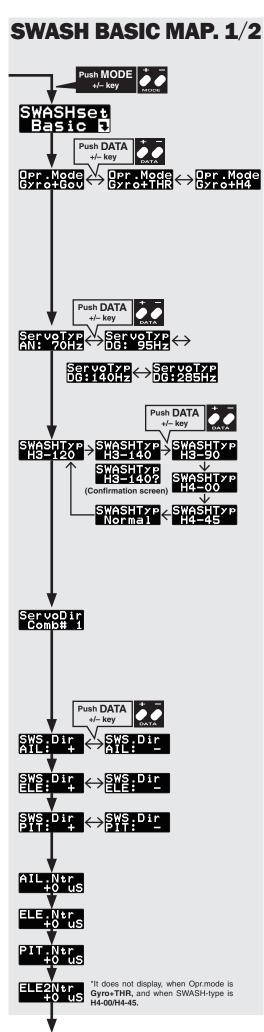
AILERON / ELEVATOR GYRO SETUP

Finishing the setup:

Using the Remote Gain Functions (roll, pitch and yaw)

- Some Futaba transmitters contain auxiliary gain functions for aileron, elevator and yaw. Please refer to your transmitter's instruction manual. Assign the GYR, GYR(AIL) and GYR(ELE) channels within the transmitter. Within the CGY750 [S.BUS] Basic menu—Rotor Head Gyro Gain "RotHd.Gn" – In the SBUS menu assigning "RotHd.GN" to a channel will allow the Rotor head gain to be adjusted via the TX. If you are using a 6CH or less TX, setting "RotHd.Gn" to "INH" will then default the gain to "BaseGain" in the Flight Tuning menu. Suggested setting and default is CH9. Tail Rotor Gain "RGn" – In the SBUS menu assigning "RGn" to a free TX channel will allow for the tail rotor gain to be adjusted via the TX. Suggested setting and default is CH5.
- 2. The gyro function within your transmitter should list all three gain channels. Adjustments can be made from within this function. The gyro function can usually be assigned to various switches or conditions to offer greater adjustability. Please refer to your transmitter's instruction manual for further details.
- 3. Initially the AIL and ELE gains should be set to 60% and the operating mode should be set to [NOR]. Once the trim process has been completed, the flight mode should be changed over to [AVCS]. When the AIL and ELE gyros are in CMT mode, [NOR] versus [AVCS] may be selected in the gyro menu in the transmitter (Futaba transmitters). Alternatively, [NOR] versus [AVCS] may be manually selected in the CGY750.

Setting the CGY750 gains by using endpoints or manual adjustments



• Verify that the gyro compensates in the correct direction for all three axes before flight. If the compensation direction is incorrect, the model will roll, flip, or pirouette uncontrollably even before it leaves the ground.

If your transmitter does not support the remote gain adjustment it is still possible to use spare channel on the transmitter to make the adjustments. Assign unused channel (verify that these channels are not assigned or operated by a switch or dial) within the transmitter. Set the [S.BUS. Basic] → "RotHd.Gn" channels to the appropriate channel. Use the end point adjustment within your transmitter for these channels to make the gain adjustments and the reverse function within the transmitter may also be used to achieve different gains based upon flight modes. Please refer to your transmitter's instruction manual for further details.

Manual gain adjustment

 If your setup does not leave any channels free or if your transmitter does not support auxiliary gain adjustment, then it is possible to adjust the gain manually within the CGY750. Set both the [S.BUS].Basic → RotHd. Gn to [INH]. The gain adjustments are now made by entering the [Flight Tuning] → Base Gain and pressing the data [+] or [-] keys. The [SWASHset] \rightarrow Basic menu contains all of the functions necessary to set up the swash plate servos and to set up all swash plate mixing functions.

(1) Start display

The editing menus are scrolled by pushing the MODE+ or - key

(2) Operation mode [default: Gyro+Gov]

This selects the operating mode of the CGY750.

[Gyro+Gov] Both the gyros and the governor are operational.

[Gyro+THR] The gyro is operational, and the governor is disabled. The throttle channel from the receiver is passed through to the [TH/E2] port on the CGY750.

[Gyro+H4] Must be selected when a [H4 xx] swash plate type is selected. This disables the governor and throttle servo output and the [TH/E2] port on the CGY750 is now the second "Elevator" [E2] servo output.

(3) Servo type [default: DG:285Hz]

This selects the swash servo types. There are four kinds of the servo driving frequency selection, AN:70Hz, DG:95Hz, DG:140Hz, DG285Hz. Previous version supported Analog= AN: 70Hz and DG:1520= DG:285Hz only. All Futaba digital servos can be worked with fastest DG:285Hz mode but some of other brands servos do not support DG:285Hz mode. In this case, select the proper servo driving frequency to meet the servos.

(4) Swash type [default: H3-120]

Select the swash plate type. Pushing the DATA+ or – key, display shows the confirmation screen as xxx? Pushing the SET key, the type is changed. Pushing the RSET key or no operation the key for more than 1 second, the display returns to previous setting. When the type is changed, all swash parameter are reset.

WARNING

● If the operating mode has been changed, then the CGY750 must be reset by powering down and then powering back up.

Read your servo instruction sheet to determine the proper servo settings. The servo type parameter within the CGY750 must match the type of servo you are using. Incorrect setting may damage the CGY750 or the servo. Incorrect setting may also result in a loss of control during flight.

• All of the swashplate parameters are reset when the swash plate type is changed. Please proceed through the entire setup process before attempting to fly the model.

(5) Swash servo direction setting [default: 1]

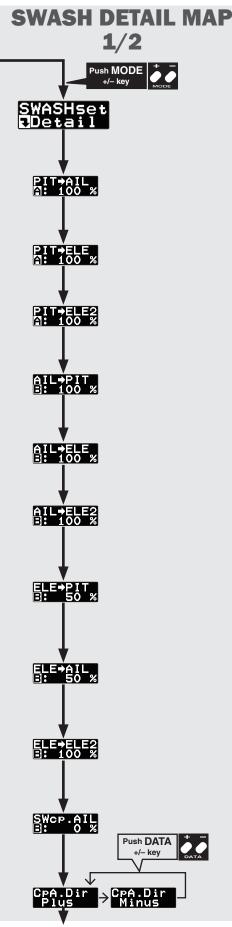
This parameter facilitates achieving proper swash servo movement electronic CCPM models (eCCPM) In the H3-xx swash mode, three of the swash servos directions are changed by pushing the DATA[+] or DATA[-] key. Choose the combination number which produces level swashplate travel with a collective pitch input from the transmitter. There are 8 combination choices for the H3-xx swash mode. On H4-xx swash mode, there are 16 combination choices. After selecting the combination number, aileron, elevator, pitch, and 2nd elevator servo parameters are automatically set.

NOTE: Occassionally the aileron or elevator function directions are reversed even though collective pitch direction is correct. In this case, change the direction of the affected function using the SWS.Dir parameter. The sign of its value will change from (+) to (-) or vice versa.

(6) Swash direction setting [default: +]

This selects the aileron, elevator and corrective pitch direction. Reverse the direction when the stick movement and swash movement are opposite.

(7) Servo neutral adjustment [default: 0μS ranges: -116~0~+116uS]


This menu is effectively a subtrim or individual neutral adjustment for each of the swash plate servos. All servo arms should first be positioned as perpendicularly as possible to the control linkage with the collective stick positioned at 0 degrees collective (usually centered at half stick). Only then and if needed should neutral adjustments be made with goal being to keep them as small as possible. The ELE2 neutral adjustment only works if the H4-xx swash plate type has been selected.

To use this function select the servo you would like to adjust and press the DATA [+] or [-] key to position the servo as desired.

SWASH BASIC MAP. 2/2 (8) Swash Rate (rate adjustment) [default: 50% ranges: 0~100%] The Swash Rate settings are used to adjust the amount of throw allowed for roll (aileron) and pitch Push MODE +/- key (elevator). The one setting applies to both roll and pitch axes; they are not individually adjusted. Use the Data [+] or [-] key to make an adjustment. (DUAL RATES MUST BE 100) The base amount of cyclic pitch used to control the helicopter. -Suggested amount of base cyclic pitch CondMenu 800 size – 10 degrees When **CondMenu** is ON, this 700 size – 9 degrees changes into CondMenu. SWS.Rate 600 - 550 size – 8 degrees 500 size 7 degrees 450 and below- 6 degrees (9) Pitch Rate (rate adjustment) [default: 50% ranges: 0~100%] CondMenu The [PIT.Rate] is the amount of collective pitch travel allowed, and this value will be similar to what When CondMenu is ON, this you may have traditionally used with a flybarred helicopter. A good starting range for Sport, 3D changes into CondMenu. PIT.Rate and F3C is +/-10 to +/-12 degrees. Beginners may want to change the negative collective pitch value to -3 degrees instead of -10. Use the Data [+] or [-] key to make an adjustment. 50% ranges: 0~100% CondMenu (10) Swash ring [default: 130%] When CondMenu is ON, this changes into CondMenu. This function is used to prevent binding of the swash plate servos when the transmitter control SWS.Ring C1 130 % stick is moved toward a corner (for example, full right and full aft cyclic). Press the Data [+] or [-] key to adjust the value. Push DATA (11) Aileron (roll)/ Elevator (Pitch) Gyro direction setting [default: Normal] AGy.Dir Normal AGy.Dir Revers This parameter controls which direction the CGY750 (roll / pitch axis) will compensate when the helicopter rolls (pitches). Pick the helicopter up and roll the helicopter to the right. The CGY750 should compensate by adding left cyclic to the swash plate. (Pick the helicopter up and rotate $\begin{array}{c} \mathsf{EGy.Dir} \\ \mathsf{Normal} \end{array} \leftrightarrow \begin{array}{c} \mathsf{EGy.Dir} \\ \mathsf{Reverse} \end{array}$ the nose of the helicopter downward. The CGY750 should compensate by adding aft cyclic to the swash plate.) If the CGY750 compensates in the wrong direction, then it will be necessary to reverse the Compensation Direction setting by pressing the [+] or [-] data key once. • Verify that the CGY750 compensates in the correct direction before flight. If the compensation direction is incorrect the model will roll and/or pitch uncontrollably at lift off. Push DATA (12) Aileron direction memorizing STK.Dir This function teaches the direction of aileron swashplate movement to the CGY750. Move the aileron stick to RIGHT full and push the DATA [+] or [-] key. The RIGHT direction of the aileron data will be saved to CGY750. To confirm the setting, move the aileron stick to full RIGHT, and the "!" mark will appear on the display. This procedure must be done for the F/F mixing to function correctly. (13) Elevator direction memorizing Push DATA This function teaches the direction of elevator swashplate movement to the CGY750. Move the elevator stick to full UP and push the DATA [+] or [-] key. The UP direction of the elevator data will be saved to CGY750. For clarification purposes, UP refers to the direction the ELE stick would be pulled to raise the nose of an upright model in flight and which would yield an aft swashplate deflection. To confirm the setting, move the elevator stick to full UP, and the "!" mark will appear on the display. This procedure must be done for the F/F mixing to function correctly. (14) Pitch low memorizing [default: 1940µS] This parameter saves the minimum collective pitch point into the CGY750. Move the collective pitch stick to minimum pitch and push DATA [+] or [-] key. The minimum pitch signal will be saved to the CGY750. The display shows "!" when the stick is at the saved point. The minimum collective Pit Low 1940 uS pitch setting must saved into the CGY750 for F/F mixing and/or linkage compensation to function correctly (15) Pitch zero memorizing [default: 1520µS] This parameter saves the zero collective pitch point into the CGY750. Move the collective pitch stick to zero degrees pitch and push DATA [+] or [-] key. The zero degrees pitch signal will be Pit.Zero 1520 uS saved to the CGY750. The display shows "!" when the stick is at the saved point. The zero degrees pitch setting must saved into the CGY750 for F/F mixing and/or linkage compensation to function correctly. (16) Pitch high memorizing [default: 1100µS] This parameter saves the maximum collective pitch point into the CGY750. Move the collective pitch stick to maximum pitch and push DATA [+] or [-] key. The maximum pitch signal will be saved to the CGY750. The display shows "!" when the stick is at the saved point. The maximum collective pitch setting must saved into the CGY750 for F/F mixing and/or linkage compensation to function correctly.

Swash Detail Setting

The swash detail menu contains settings for pilots looking to achieve the absolute best performance from their gyro by precisely adjusting swashplate movement so as to virtually eliminate adverse flight behavior during some maneuvers such as roll or loops/flips. Items (1) - (15) are used to keep the swash plate level at high and low collective pitch and to reduce or eliminate PIT \rightarrow cyclic and AIL \rightarrow ELE and ELE \rightarrow AIL cyclic eCCPM interactions. To enter the detail menu, navigate to the Basic menu, press and hold the mode [+] key for one second and the menu will change from the Basic to Detail. To exit the detail menu press and hold the mode [+] key for one second and the displayed.

(1) Swash expert setting: start display

Use the mode [+] or [-] keys to navigate through the menu.

(2) PIT→AIL mixing rate [default: 100%] [ranges: 30% ~ 150%]

Going from MID to HIGH and MID to LOW pitch check that the swash plate is traveling flat throughout the entire span. Using the (+/-) Data keys to level the swash plate on the aileron axis to the middle point by raising or lowing the aileron servo.

(3) PIT→ELE mixing rate [default: 100%] [ranges: 30% ~ 150%]

Going from MID to HIGH and MID to LOW pitch check that the swash plate is traveling fit thoughout the entire span. Using the (+/-) Data keys to level the swashplate on the elevator axis to the middle swash position by raising or lowering the elevator servo.

(4) PIT→ELE2 mixing rate [default: 100%] [ranges: 30% ~ 150%]

This parameter adjusts the pitch to 2nd elevator mixing rate. The rates can both be adjusted individually for both full high and low collective positions. It is only available at H4 swash mode.

(5) AIL→PIT mixing rate [default: 100%] [ranges: 30% ~ 150%]

At middle collective pitch check that during right to left and left to right aileron action the swash plate is staying level on the elevator and collective pitch axis. Is the swash plate in raising or falling with aileron inputs, use the Data (+/-) key to raise or lower the swash plate to match the middle point during aileron inputs.

(6) AIL→ELE mixing rate [default: 100%] [ranges: 30% ~ 150%]

This parameter adjusts the aileron to elevator mixing rate. The rate can be adjusted for left and right directions individually. It is only available for H4-45 swash mode.

(7) AIL→ELE2 mixing rate [default: 100%] [ranges: 30% ~ 150%]

This parameter adjusts the aileron to 2nd elevator mixing rate. The rate can be adjusted for left and right directions individually. It is only available for H4-45 swash mode. It is only available for H4-45 swash mode.

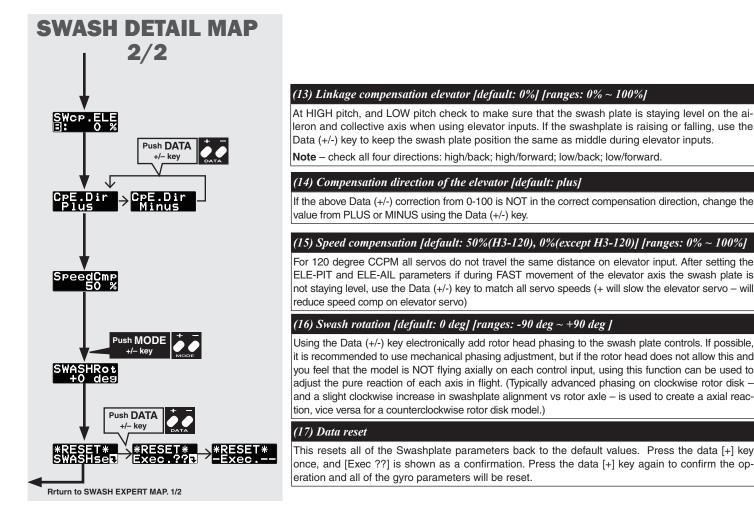
(8) ELE→PIT mixing rate [default: 50%(H3-120), 100%(except H3-120)] [ranges: 30% ~ 150%]

At middle collective during back to forward elevator inputs check if the swash plate is raising or lowering during the input. If it is moving use the Data (+/-) key to raise or lower the swash plate to match the middle point during elevator inputs.

(9) ELE→AIL mixing rate [default: 50%(H3-120), 100%(except H3-120)] [ranges: 30% ~ 150%]

At middle collective while moving the elevator back and forth check to make sure the aileron axis is staying level. Use the Data (+/-) key to raise or lower to level the swash plate during full forward and back elevator input.

(10) $ELE \rightarrow ELE2$ mixing rate [default: 100%] [ranges: 30% ~ 150%]


This parameter adjusts the elevator to 2nd elevator mixing rate. The rate can be adjusted for up and down directions individually. It is only available for H4 swash mode. It is only available for H4 swash mode.

(11) Linkage compensation aileron [default: 0%] [ranges: 0% ~ 100%]

At HIGH pitch, and LOW pitch check to make sure that the swash plate is staying level on the elevator and collective axis when using aileron inputs. If the swashplate is raising or falling, use the Data (+/-) key to keep the swash plate position the same as middle during aileron inputs. **Note** – check all four directions: high/right; high/left; low/right; low/left

(12) Compensation direction of the aileron [default: plus]

If the above Data (+/-) correction from 0-100 is NOT in the correct compensation direction, change the value from PLUS or MINUS using the Data (+/-) key.

LINKAGE COMPENSATION

The following section describes in detail the adjustment of the Linkage Compensation Menu to virtually eliminate an interactions present in the eCCPM model.

*Prior to making any adjustments within this menu, the aileron, elevator and pitch movement should be set to full travel in the transmitter (AFR/dual rates set to 100%).

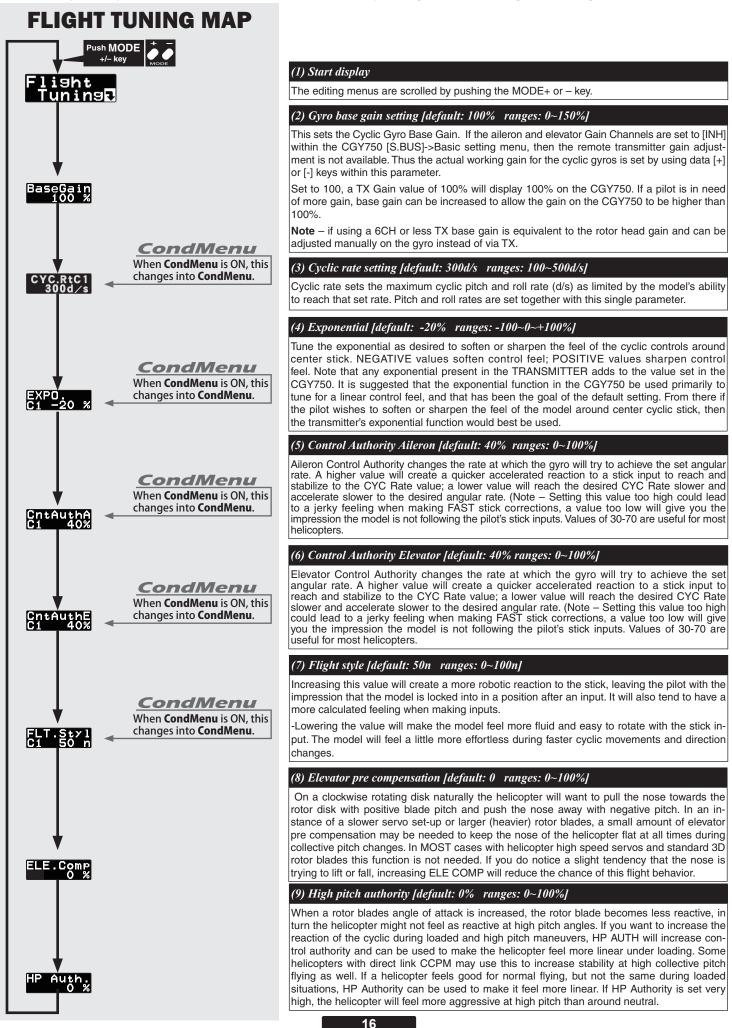
Pitch calibration (This should be set prior to the compensation process)

- □ This parameter reads the collective pitch operation ranges to the CGY750. Move the collective stick to center position (Pitch zero point). Open the Pit.Zero on the SWASHset Expert menu and push the set button. The pitch zero point is memorized to the CGY750.
- □ Move the collective stick to minimum position. Open the Pit.Low menu and push the set button. The minimum pitch position is memorized.
- □ Move the collective stick to maximum position. Open the Pit.High menu and push the set button. The maximum pitch position is memorized.

Pitch movement calibration

- □ Make sure the swash plate is level when the collective stick is center position at first. Adjust the length of the linkage rods so that the swash plate is level.
- □ Move the collective stick to maximum position. Make sure if the swash plate is level by adjust if needed using the PIT → AIL and/or PIT → ELE mixing rate in the SWASHset Expert menu. Move the collective stick to minimum position and once again use the mixing rates to achieve a level swashplate.

Aileron movement calibration


- □ Move the collective stick to center position. Move the aileron stick right and left.
- □ When a left or right AIL command is input, you may observe an AIL \rightarrow PIT interaction. Adjust the AIL \rightarrow PIT mixing rate in the SWASHset Expert menu to minimize the interaction. The mixer should be adjusted for both left and right AIL directions.

- □ Move the collective stick to the maximum position. Open the SWcp.AIL on the SWASHset Expert menu. Move the aileron stick left and right. Adjust the SWcp.AIL rate in the SWASHset Expert menu to be minimize any interaction present similar to those observed for AIL inputs at half collective.
- □ If the interaction is increased when increasing the SWcp.AIL rate, the compensation direction is reversed. Open the CpA.Dir menu and set the direction to minus.
- □ Mixing rates for both left and right aileron should be adjusted. Move the collective stick to minimum position. Adjust SWcp.AIL rate the same as was done for maximum collective pitch.

Elevator movement calibration

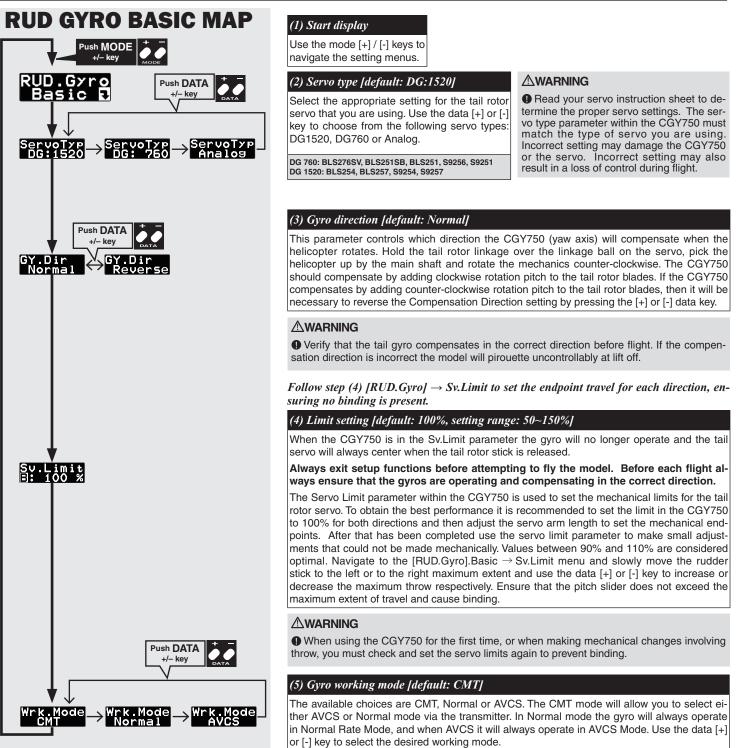
- ☐ Move the collective stick to the center position. Move the elevator stick up and down.
- □ Adjust the ELE → PIT and/or ELE → AIL mixing rates in the SWASHset Expert menu to minimize any observed interactions. When an UP or DOWN ELE command is input, you may observe an ELE → AIL interaction. You can see this interaction, if present, by precisely positioning the main rotor blades in line with the tail boom. When an ELE command is input, adjust the ELE → AIL mixing rate until the blades do not move. The mixing rates should be adjusted for both up and down directions.
- □ Move the collective stick to maximum position. Open the SWcp.ELE in the SWASHset Expert menu. Move the elevator stick up and down. Adjust the SWcp.ELE rate in the SWASHset Expert menu to minimize the interaction between ele input and pit and/or ail.
- □ In case of the interaction is increased when increasing the SWcp.ELE rate, the compensation direction is reversed. Open the CpE.Dir menu and set the direction to minus. Mixing rates for up and down elevator should be adjusted. Move the collective stick to minimum position. Adjust SWcp. ELE rate same as was done for maximum collective pitch.
- □ Open the SpeedCmp on the SWASHset Expert menu. Move the elevator stick up and down quickly and look for what is best described as a ELE → PIT interaction or "wiggle" in the swashplate. The faster your servos, the less the wiggle. Adjust the SpeedCmp rate as needed to minimize this interaction.

The [Flight Tuning] \rightarrow This menu contains all of the functions necessary to set up the CGY750 roll / pitch axis for operation.

Following your transmitter instructions, program your transmitter as follows:

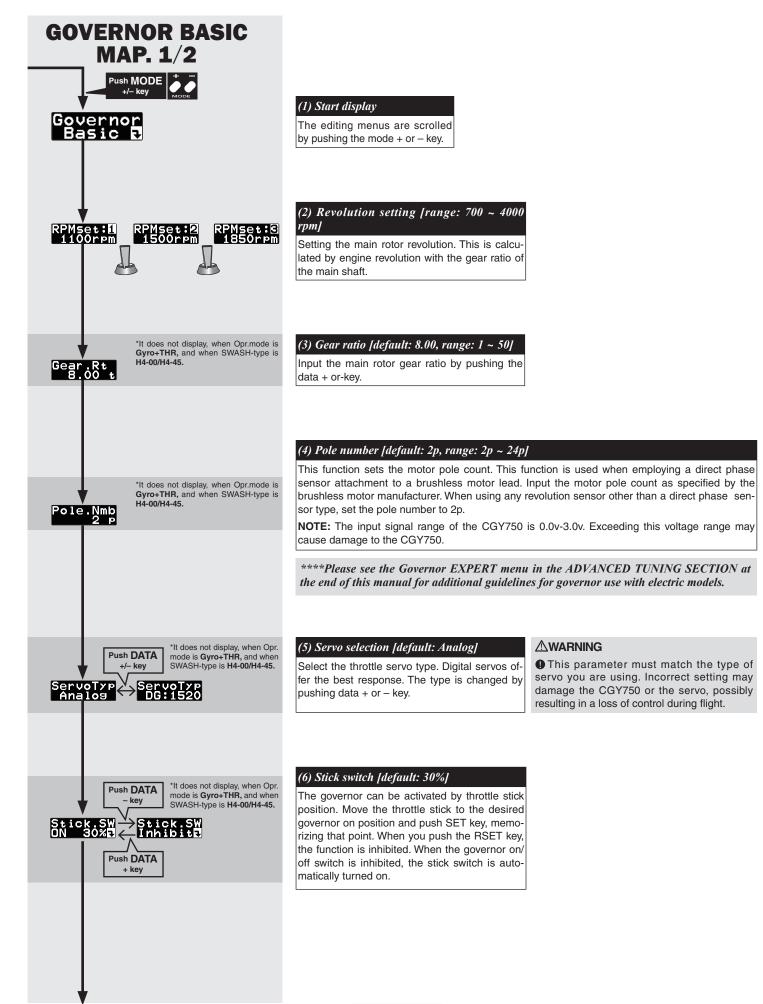
- Enable the rudder gyro function within the transmitter.
- Set the gyro mode to AVCS (GY) within the transmitter.
- □ Set the remote gyro gain to 75% AVCS in the transmitter for the Normal and Hold flight conditions and use 50% AVCS for all idle up conditions. See "Setting the Gain" section later in this manual for more details.
- Set the Tail Rotor ATV/EPA to 100% for both left and right.
- □ Set D/R to 75% for both left and right. This will reduce the maximum pirouette rate. Make adjustments to these values once the initial test flight has been completed. Never use transmitter endpoint adjustments/ATV to adjust pirouette rate.
- □ It is recommended that you run 30% softening expo on the tail rotor channel.

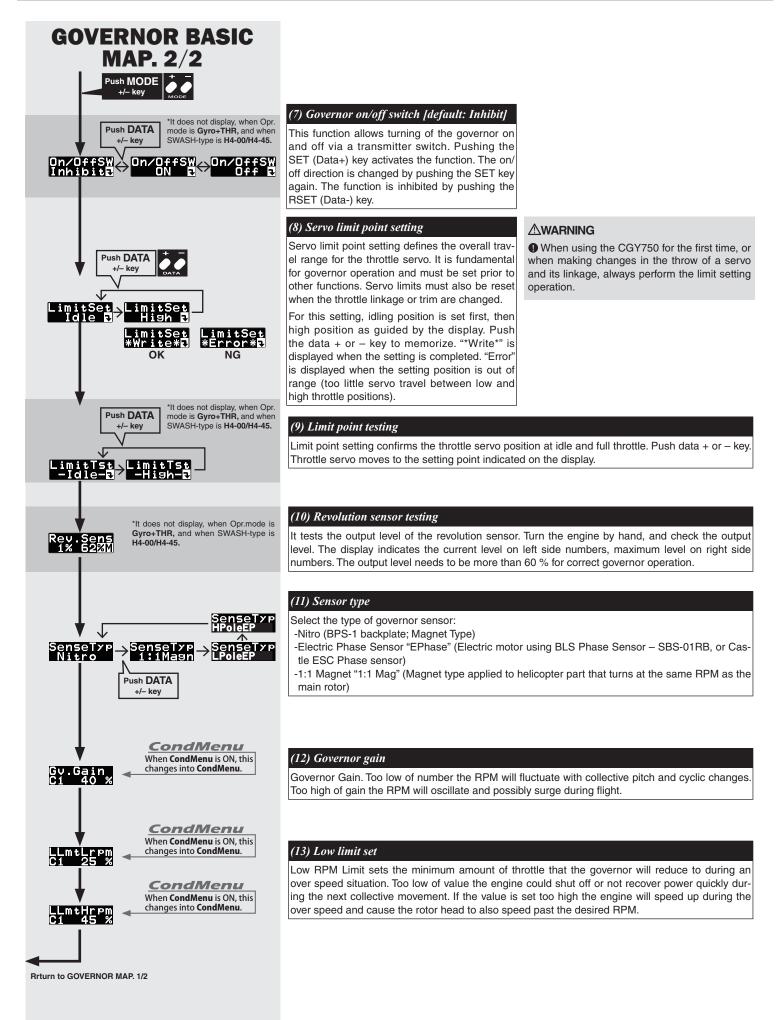
⊗ Do not connect the tail rotor servo to the gyro until the servo type has been selected. Operating the servo using the incorrect setting may damage the CGY750 or the servo.


RUDDER GYRO BASIC SETTING

The [RUD.Gyro].Basic menu contains all of the functions necessary to setup the CGY750 tail gyro for operation.

Remove all of the servo arms (cyclic servos and tail rotor servo) and linkages from the servo to prevent any possible damage. All analog servos must also be disconnected until the servo type has been set up within the CGY750. Power the system up and allow the CGY750 to initialize.


Plug your tail rotor servo into the rudder slot in the CGY750 control box. Install the servo arm, ensuring that the control ball linkage is perfectly perpendicular to the tail rotor push rod. Confirm that the direction of rudder servo movement with stick input is correct. Use your transmitter's servo reverse function if needed to achieve the correct movement.


Install the servo arm screw and place the linkage onto the control ball on the servo arm. Remember to use loctite on this screw if your servo has a metal output/final gear.

Governor Basic Setting

This menu sets the governor's fundamental functions. The menu *Servo limit point setting* must be set first.

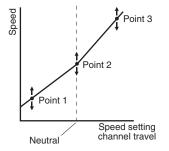
GOVERNOR SPEED SETTING

The CGY750's rpm selection is accomplished by setting the channel in the section (10) "Revolution channel" menu within the "*S.BUS Basic Setting*" to the governor speed setting channel of your system. When using an independent governor on/off switch, activate the section (6) "Governor on/off switch" function within the "*Governor Basic Setting*" section earlier in this manual.

Direct set by transmitter on Gov. mixing

- □ When governor mixing is used to switch the RPM of the rotor head speed, the head speed can be switched with each condition or the switch.
- *For a description of the governor mixing, refer to your transmitter's manual.

Using by 3position switch


□ Set the RPM at each switch position in the "(2) Revolution setting" menu within the "*Governor Basic Setting*" section earlier in this manual.

Speed setting precautions

- When the speed setting channel travel (EPA, ATV, AFR) is set to 20% or less, points 1 and 3 cannot be set.
- The engine maximum speed range limits the maximum speed setting.
- Test fly the helicopter with the governor turned off and tach the main rotor R.P.M. while in horizontal flight. This is the maximum R.P.M. that can be achieved with the engine and pitch setup that you are using. Please set the governor maximum speed to approximately 50 R.P.M.'s less than max R.P.M. (Example: If 1800 R.P.M.'s is max, then set governor to 1750)
- The maximum speed can be verified at the MAX. speed display. However, this value could reflect an unlocked main rotor condition and would thus be inaccurate.

Reference

The transmitter ATV/EPA function can also be used to change the point 1 and point 3 speed settings to a certain extent. The amount of this change is proportional to the difference between the point 1 and point 3 set speed and the point 2 set speed. For example, if point 1 is set to 1300rpm and point 2 is set to 1500rpm, and the transmitter ATV is changed from 20 to 100%, the point 1 speed will change from 1460 to 1300rpm. The transmitter ATV function has very little effect on the point 2 speed setting. The speed changes linearly on a line connecting points 1, 2, and 3.

GOVERNOR OPERATION

Governor operation

The CGY750 operates from 700 to 4000rpm main rotor speed. However, the engine must be running at the set speed. The CGY750 turns off the governor when the engine is starting or idling.

* Governor operation: Operation that stabilizes the engine speed at the set speed.

Condition of the governor to be on

For safety purposes, the governor is turned on when the conditions below are satisfied.

- $\hfill\square$ The on/off switch conditions are set to off during power on.
- $\hfill \Box$ The stick switch is in the on position when it is used.
- The on/off switch is in the on position when it is used.
- □ Setting speed is not off.
- $\hfill \Box$ The engine speed exceeds to 60 % of the setting speed.
- \Box The speed sensor is working properly.

The following operations do not indicate trouble:

When engine speed rises above the set speed:

A near-vertical dive may cause the engine speed to exceed the set speed.

Throttle operation speed and ON/OFF point:

If throttle operation exceeds 60% of the set speed and the rotor speed rises

to the set value, the ON/OFF point may seem to differ with the operating speed. Delay operation to smooth the switching operation causes this and does not mean that the ON/OFF point has changed.

Deviation from set speed:

The CGY750 stabilizes the engine speed to within $\pm 1\%$ of the set speed. For example, if the rotor R.P.M. is set to 1500rpm, the Rotor R.P.M. speed will deviate about ± 15 rpm. However, this poses no problem from the standpoint of practical use.

• Safety reminder: Remember to configure your transmitter fail safe settings for not only the throttle channel but also governor ON/OFF channel to ensure the governor correctly disengages should the radio enter fail safe.

RECOMMENDED GYRO GAIN SETTINGS

Recommended gain settings:

Size	Recommended Gyro Gain
Size	AIL/ELE Gyro
450-550	50-60.00%
600-700	50-60.00%
750-more	50-60.00%

50% is a good starting point for rudder gain regardless of model size.

BEFORE FLIGHT CHECKLIST

Always verify that the transmitter and Receiver batteries are fully charged.

- □ Check the gyro mounting tape and ensure that it is in good condition. Make sure the gyro is firmly mounted to the helicopter.
- □ Verify that the gyro wiring has some slack in it and all wires are clear of the main frame.
- Dever on the transmitter and receiver. Allow the gyro to initialize.
- □ Check and verify that the servo type parameter is set correctly for the tail rotor and cyclic servos.
- Uverify that all of the servo arm screws are installed.
- Ensure that the cyclic and tail rotor servos do not bind when moved to the full extent of the throw.
- □ Verify that the gyro is operating in the correct mode [AVCS or Normal] and that the gains are properly set.
- Test all controls and verify that they move in the correct direction.
- □ Verify that the gyro compensates in the correct direction for all three axis before flight. If the compensation direction is incorrect the model will roll, flip, or pirouette uncontrollably, at a very high rate.

Adjustments During the Test Flight

• Always level the swashplate using the cyclic stick before applying throttle and spooling the main rotor blades up. During takeoff small corrections may be necessary. If you make large corrections while the helicopter is on the ground, it may tip over since the helicopter is firmly on the ground and the gyros are overcompensating due to the lack of movement.

• Some helicopters may have a tendency to resonate/shake during spool up. Always leave the helicopter on the ground until this resonance or shaking goes away. If this issue continues, it is recommended to try some rubber skid stops or take off from a softer surface such as grass. Vibrations contribute to this ground resonance. Verify that everything on your model is balanced correctly.

* When the CGY750 is used with a ESC or BEC and a power switch is not used there is a possibility that the intermittent connection as you connect the flight battery may cause the CGY750 initialization to fail. Always ensure that the gyro has initialized properly by verifying that the gyros are compensating as the helicopter is moved. It is recommended to use a power switch on the power supply line to avoid this possibility.

Trim flight:

A trim flight should be performed on a new setup or when making setup changes to the mechanical adjustments on the helicopter.

- 1. Verify that the AIL and ELE gyros are set to 50% gain and the Normal operating mode. Take the model off into a hover and use the transmitter trim tabs to trim the model during flight. The most accurate trim flight is accomplished in calm wind conditions.
- 2. Once the model is trimmed out, land the model and shut the engine off. Move the gyro gain switch from Normal to AVCS mode 3 times in a second. Make sure the neutral positions for both aileron and elevator are memorized. Do not center the trims after memorizing their positions into the CGY750.
- *If your gyro gain switch is on the flight mode switch, perform the trim flight and land the model. Shut the engine off and change the CGY750 operating mode to AVCS. Now turn the CGY750 off and back on. The neutral positions for both aileron and elevator will be memorized.
- *Manual Gain Adjustment: Perform the trim flight and land the model. Shut the engine off. Change the CGY750 operating mode to AVCS. Now turn the CGY750 off and back on. The neutral positions for both aileron and elevator will be memorized.
- 3. After the trim flight, change the gyro operating mode to AVCS and test fly the model again. Increase the gain on the aileron and elevator gyro until you notice a oscillation, then decrease the gain slightly. Keep the AIL and ELE gyro gains set to the same value.
- *In case of lack of the channel for gyro gain setting on the transmitter, adjust the gyro gain on the CGY750.

Rudder gyro adjustments:

The tail rotor/rudder AFR or D/R function within the transmitter is used to adjust the pirouette rate of the helicopter to suit your requirments. Do NOT use ATV or rudder channel travel adjustment for this purpose. For optimum performance, the tail rotor should be trimmed in Normal/Rate mode as closely as possible with adjustments to the tail rotor pushrod length before finalizing with transmitter trim and then memorizing that value into the CGY750.

The tail rotor gyro gain should be raised until the tail begins to oscillate quickly (also called tail "wag"). Once this point has been achieved, reduce the gain as needed a few percent at a time to eliminate the oscillation. Repeat the process for all flight conditions. The main rotor speed, tail rotor ratio, tail rotor pitch range and tail blade length play a large part in achieving optimum tail rotor performance. The gain value can vary drastically from model to model, and the exact value should not play a part in the evaluation of the gyro's performance.

TUNING GUIDELINES FOR CGY 750

□ V2 firmware for the CGY750 has been exhaustively tested to NOT require tuning of numerous parameters to achieve good flying erformance. Nonetheless, the wide variations in model, blade, and radio equipment types may dictate the need for a small amount of fine tuning to yield the best model performance.

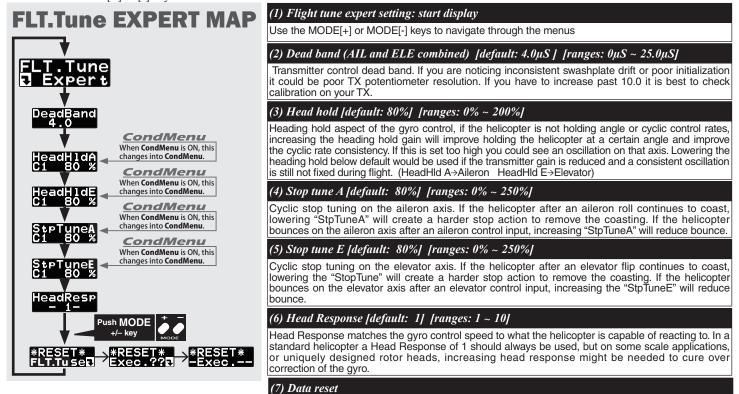
□ Static cyclic pitch should be measured in the SWS.Rate section of the SWASHset BASIC menu ONLY. Suggested cyclic pitch range should be at least 9-10 degrees on each side of neutral with an acceptable working range for the SWS.rate of 50-70%. Cyclic pitch ranges in excess of 10 (maximum of 12) degrees within this 50-70% range are not problematic as long as no swashplate or other linkage binding occurs. Previous recommendations of 8-9 degrees of cyclic pitch are not applicable to this firmware and will yield inadequate cyclic rate and poor performance. Use your transmitter's AIL and ELE AFR's or dual rates to fine tune cyclic rates to your needs. Observed cyclic travel when the CGY750 is NOT in the SWS.Rate menu will be several degrees more than the measured static pitch.

□ Total gyro (transmitter) gain for AIL and ELE should initially be set to 50-60%. It is also suggested that the gyro gains for AIL and ELE be set to matching percentages. AIL.Sepa will facilitate being able to keep the AIL and ELE gyro gains at similar percentages.

□ Proper response of the elevator axis to control input with avoidance of bounce is achieved with adjustment of D gain. If the bounce is slow at the end of an elevator cyclic input, increase the D gain until the bounce disappears. The limit of D gain adjustment comes when a fast and/or harsh bounce is observed instead of a crisp stop. Please note that any flybarless or even a single axis tail rotor gyro will exhibit bounce if total gyro gain is too high. If you have tuned D gain as well as possible and still have a little bounce, a simple reduction in total gyro gain will almost assuredly remove the remaining bounce.

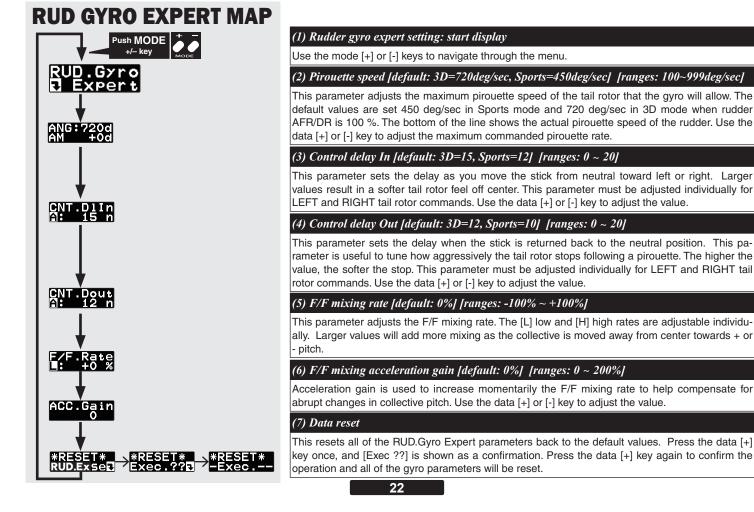
□ In addition to the ELE.Comp mixing in the Flight Tuning Menu, V2 firmware also has available in the AIL and ELE Expert mixing sections AIL, FLIP, and ROLL compensation mixers. Instructions for tuning these mixers are found on p 22 of this manual. These mixes will not be needed in most cases because the further enhanced holding ability of V2 firmware. If any tendency is observed for the model to corkscrew in rolls, deviate off axis during flips, or roll off during ascents or descents, adjustment of one or more of these mixers will eliminate the issue(s). Remember to teach the CGY750 the directions for UP ELE and RIGHT AIL commands in the STK.Dir menu (SWASHset BA-SIC) and memorize them into the system by pressing either the [+]or[-]DATA button.

TIPS FOR USING THE CGY750 GOVERNOR WITH ELECTRIC MODELS


• Safety Reminder: Remove both main and tail blades from the model and/or disengage the motor's pinion from the main gear before proceeding with any electric governor set up.

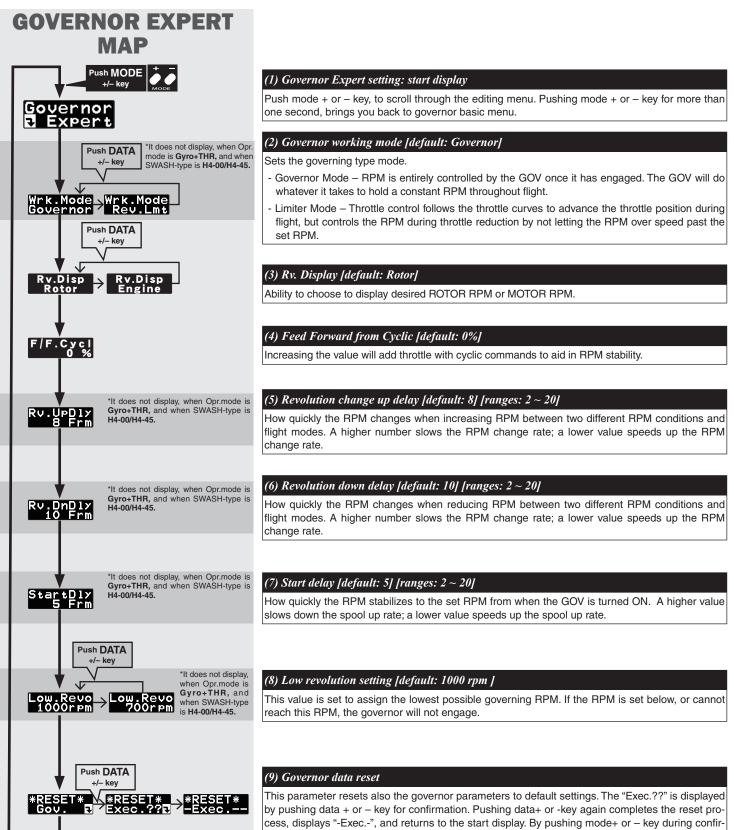
- □ Make sure your ESC is configured for external governor use. Refer to the owner's manual for your ESC.
- ☐ You may use either a brushless phase sensor or the traditional governor magnetic sensor with a magnet mounted in a collar on the main shaft or in the main gear. With one magnet, set the gear ratio to 1:1.
- □ When choosing a brushless phase sensor, observe the input signal range of the CGY750 specified in the Governor Basic section.
- □ Refer to the manufacturer's documentation for your electric motor to select the correct pole count when using a brushless phase sensor. Pole count is set to 2 when using a magnetic sensor.
- Set the governor Working Mode (Wrk.Mode) to "Governor" (EXPERT Menu).
- Set the governor Response to "Silent" (Expert Menu).
- Set the servo type (ServoTyp) to DG:1520.
- □ Set Throttle Mode (THR.Mode) to FIXED (Expert Menu). **NOTE:** It is permissible to experiment with OPTIMIZE as well to obtain the best match between governor, ESC, and motor.
- Make sure you correctly calibrate your ESC.
- □ Make sure you calibrate the governor speed ranges in the transmitter's governor menu and set the high and low limits for throttle in the Governor Basic menu.
- □ If a tail "kick" or "jerk" is observed when switching from one idle-up headspeed to another, INCREASE the Revolution Up and Down delays (Rv.UpDly/Rv.DnDly Expert Menu). Increase 2-5% at a time until the tail "kick" is suppressed.
- □ The greater the electronic speed control headroom built into the model as a function of its gearing, the more prone the tail will be to kicking with aggressive flying. Models geared for high headspeed but flown aggressively at low headspeed present the greatest challenge for the governor. The more optimally your model is geared for your chosen headspeed, the better the governor will function.
- Excessive governor gain worsens tail kick. Use as little gain as necessary for adequate headspeed control.
- □ If the model yaws nose left with aggressive collective input, activate and adjust the PIT → RUD F/F (feed forward) mixing. Increase in 2-5% increments. F/F mixing should ADD pitch to rudder with added positive or negative collective pitch assuming a CW main rotor direction.

Expert Gyro and Governor Definitions and Tuning Section


FLT. Tune EXPERT SETTING

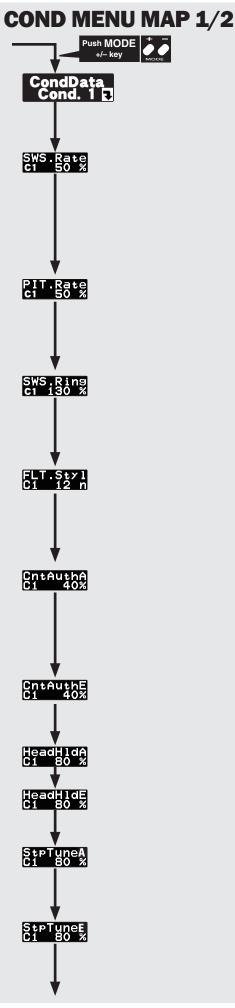
The FLT. Tune menus allow further refinement of cyclic gyro performance. It should be stressed, however, that the default values for the listed parameters will yield excellent performance for the vast majority of models. To enter the FLT. Tune menu, navigate to the Flight Tuning menu and then press and hold the MODE [+] or [-] key for one second.

Rudder Gyro Expert Setting


The rudder Expert menu contains settings for pilots looking to achieve the absolute best performance from their gyro and tail rotor system. To enter the Expert menu first navigate to the Basic menu and then press and hold the mode [+] key for one second. The menu will change from the Basic to Expert. To exit the Expert menu press and hold the mode [+] key for one second and the Basic menu will be displayed.

Expert Gyro and Governor Definitions and Tuning Section

Governor Expert Setting


This menu sets the details of the governor function for the expert modeler. Push the mode + or - key for more than one second on the Governor Basic menu display, to get into the Governor Expert menu. Push mode + or - key for more than one second again on the Governor Expert menu to be returned to the Governor Basic menu.

mation display, the reset process is aborted.

Cond Menu

When the condition menu is turned on, [CondMenu] appears newly. It becomes possible to change the function indicated by a map of [CondMenu] to 2 conditions. The function included in [CondMenu] disappears from the usual menu.

(1) Start display

The editing menus are scrolled by pushing the MODE+ or - key

(2) Swash Rate (rate adjustment) [default: 50% ranges: 0~100%]

The Swash Rate settings are used to adjust the amount of throw allowed for roll (aileron) and pitch (elevator). The one setting applies to both roll and pitch axes; they are not individually adjusted. Use the Data [+] or [-] key to make an adjustment.

(DUAL RATES MUST BE 100) The base amount of cyclic pitch used to control the helicopter. -Suggested amount of base cyclic pitch

- 800 size 10 degrees
- 700 size 9 degrees
- 600 550 size 8 degrees
- 500 size 7 degrees
- 450 and below- 6 degrees

(3) Pitch AFR (rate adjustment) [default: 50% ranges: 0~100%]

The [PIT.Rate] is the amount of collective pitch travel allowed, and this value will be similar to what you may have traditionally used with a flybarred helicopter. A good starting range for Sport, 3D and F3C is +/-10 to +/-12 degrees. Beginners may want to change the negative collective pitch value to -3 degrees instead of -10. Use the Data [+] or [-] key to make an adjustment. 50% ranges: 0~100%

(4) Swash ring [default: 130%]

This function is used to prevent binding of the swash plate servos when the transmitter control stick is moved toward a corner (for example, full right and full aft cyclic). Press the Data [+] or [-] key to adjust the value.

(5) Flight style [default: 50n ranges: 0~100n]

Increasing this value will create a more robotic reaction to the stick, leaving the pilot with the impression that the model is locked into in a position after an input. It will also tend to have a more calculated feeling when making inputs.

-Lowering the value will make the model feel more fluid and easy to rotate with the stick input. The model will feel a little more effortless during faster cyclic movements and direction changes.

(6) Control Authority Aileron [default: 40% ranges: 0~100%]

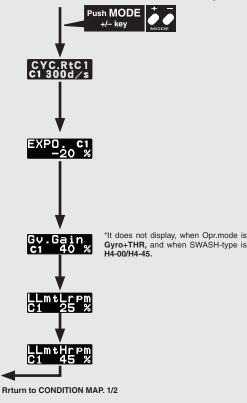
Aileron Control Authority changes the rate at which the gyro will try to achieve the set angular rate. A higher value will create a quicker accelerated reaction to a stick input to reach and stabilize to the CYC Rate value; a lower value will reach the desired CYC Rate slower and accelerate slower to the desired angular rate. (Note – Setting this value too high could lead to a jerky feeling when making FAST stick corrections, a value too low will give you the impression the model is not following the pilot's stick inputs. Values of 30-70 are useful for most helicopters.

(7) Control Authority Elevator [default: 40% ranges: 0~100%]

Elevator Control Authority changes the rate at which the gyro will try to achieve the set angular rate. A higher value will create a quicker accelerated reaction to a stick input to reach and stabilize to the CYC Rate value; a lower value will reach the desired CYC Rate slower and accelerate slower to the desired angular rate. (Note – Setting this value too high could lead to a jerky feeling when making FAST stick corrections, a value too low will give you the impression the model is not following the pilot's stick inputs. Values of 30-70 are useful for most helicopters.

(8) Head hold [default: 80%] [ranges: 0% ~ 200%]

Heading hold aspect of the gyro control, if the helicopter is not holding angle or cyclic control rates, increasing the heading hold gain will improve holding the helicopter at a certain angle and improve the cyclic rate consistency. If this is set too high you could see an oscillation on that axis. Lowering the heading hold below default would be used if the transmitter gain is reduced and a consistent oscillation is still not fixed during flight. (HeadHld A→Aileron HeadHld E→Elevator)


(9) Stop tune A [default: 80%] [ranges: 0% ~ 250%]

Cyclic stop tuning on the aileron axis. If the helicopter after an aileron roll continues to coast, lowering "StpTuneA" will create a harder stop action to remove the coasting. If the helicopter bounces on the aileron axis after an aileron control input, increasing "StpTuneA" will reduce bounce.

(10) Stop tune E [default: 80%] [ranges: 0% ~ 250%]

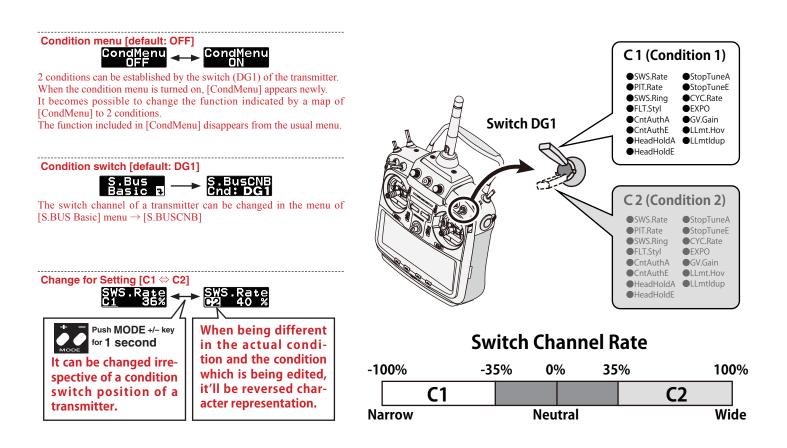
Cyclic stop tuning on the elevator axis. If the helicopter after an elevator flip continues to coast, lowering the "StopTune" will create a harder stop action to remove the coasting. If the helicopter bounces on the elevator axis after an elevator control input, increasing the "StpTuneE" will reduce bounce.

COND MENU MAP 2/2

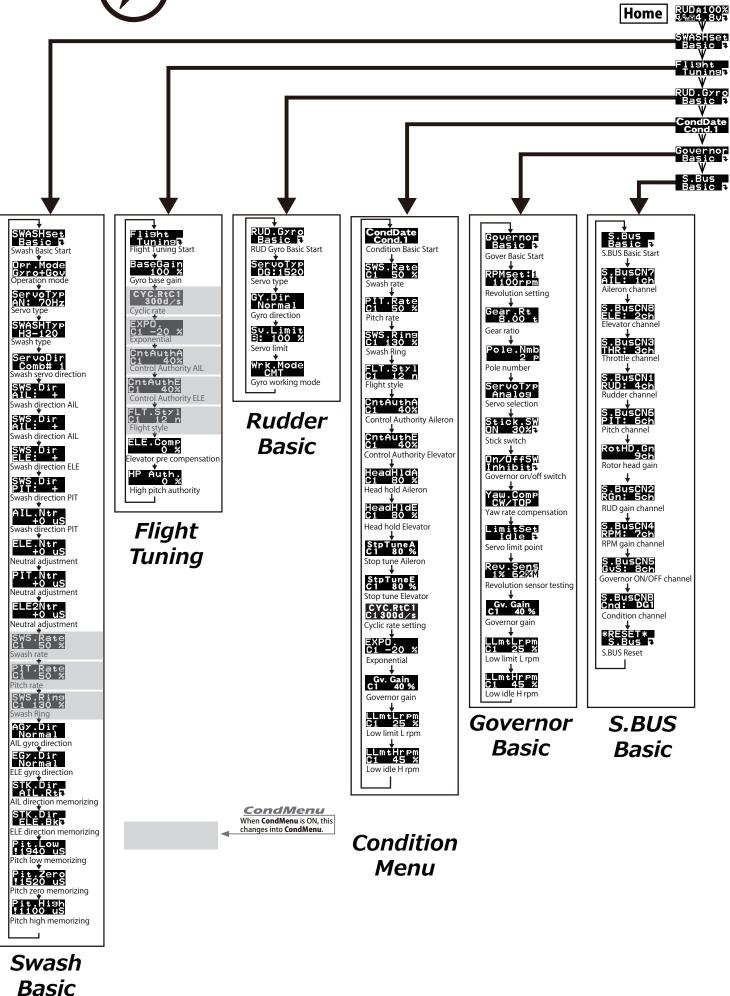
(11) Cyclic rate setting [default: 300d/s ranges: 100~500d/s]

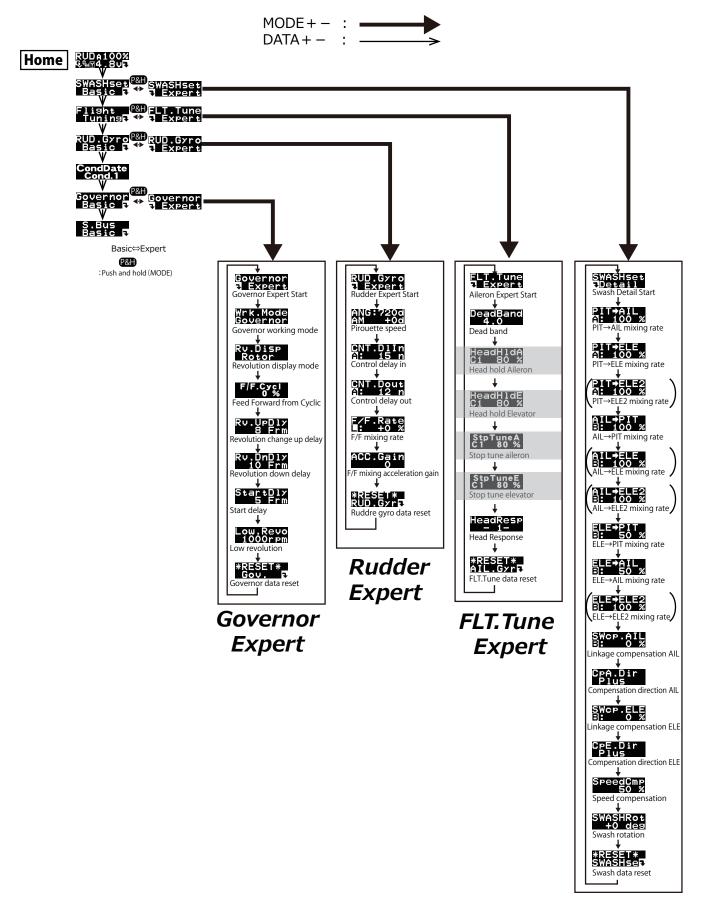
Cyclic rate sets the maximum cyclic pitch and roll rate (d/s) as limited by the model's ability to reach that set rate. Pitch and roll rates are set together with this single parameter.

(12) Exponential [default: -20% ranges: -100~0~+100%]

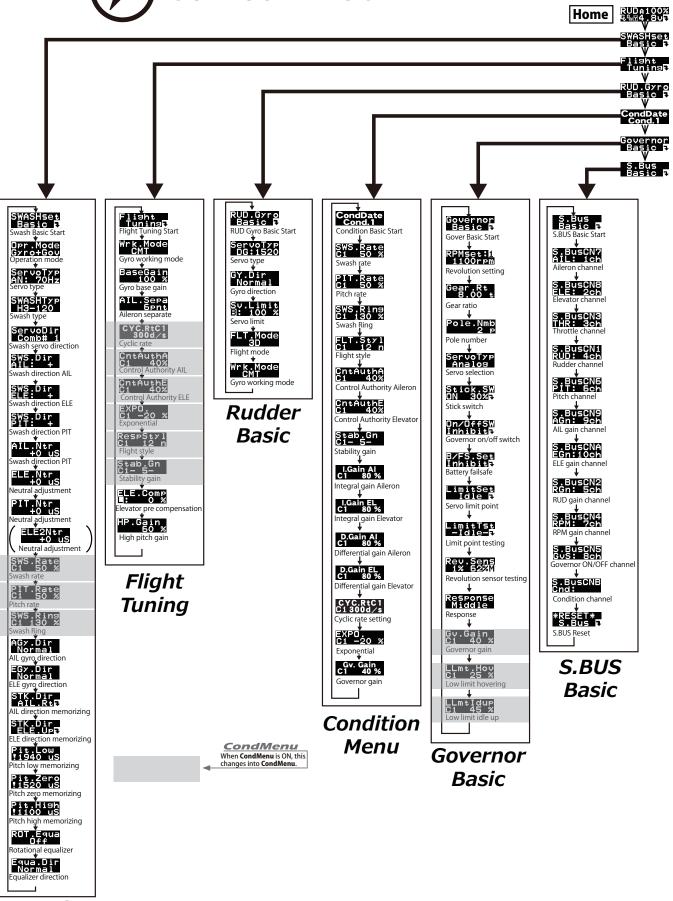

Tune the exponential as desired to soften or sharpen the feel of the cyclic controls around center stick. NEGATIVE values soften control feel; POSITIVE values sharpen control feel. Note that any exponential present in the TRANSMITTER adds to the value set in the CGY750. It is suggested that the exponential function in the CGY750 be used primarily to tune for a linear control feel, and that has been the goal of the default setting. From there if the pilot wishes to soften or sharpen the feel of the model around center cyclic stick, then the transmitter's exponential function would best be used.

(13) Governor gain

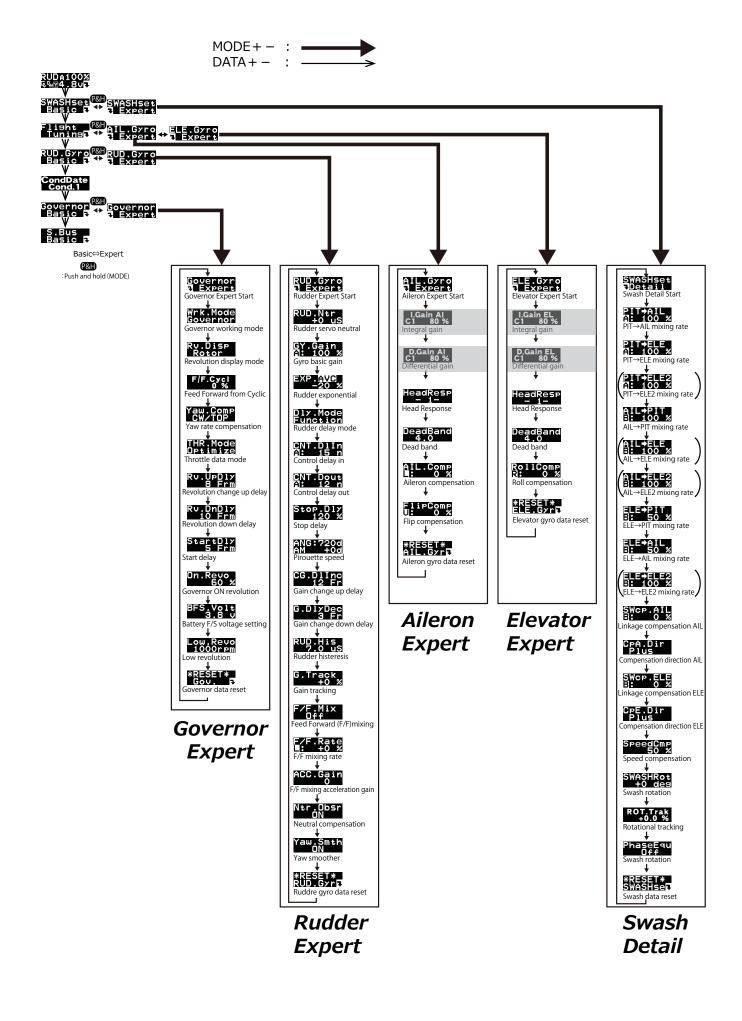

Governor Gain. Too low of number the RPM will fluctuate with collective pitch and cyclic changes. Too high of gain the RPM will oscillate and possibly surge during flight.


(14) Low limit set

Low RPM Limit sets the minimum amount of throttle that the governor will reduce to during an over speed situation. Too low of value the engine could shut off or not recover power quickly during the next collective movement. If the value is set too high the engine will speed up during the over speed and cause the rotor head to also speed past the desired RPM.



CGY750V2-3D-MAP



Swash Detail CGY750V2-F3C-MAP

Swash Basic

F3C Style Tuning Section

Exclusive Function When choosing F3C style

When choosing F3C style, the following function is added. Refer to the preceding clause about common feature with 3D.

OT.Equa Off	(Swash Basic) Rotational equalizer [default: off]	G.Track +0 %	(Rudder Expert) Gain tracking [default: 0%] [range
	This function works to optimize pirouette stability during stationary and forward flight. Press the DATA [+] or [-] key to turn the function on or off.		-20% ~ +20%] Gain tracking is another method to adjust how the tail rot stops. For example, when there is a bounce when stopping a left pirouette or the helicopter coasts when stopping rig
qua.Dir Normal	(Swash Basic) Equalizer direction [default: normal]		pirouette, increase gain tracking in the + direction. In the opposite situation, shift the gain tracking in the - direction.
	This function sets the rotational equalizer direction. Setting method: When the CGY750 is in this mode, the swashplate	F/F.Mix	(D. J. L. Frances) F/F
	will tilt on direction and stay that way. Observe the direction of the tilt relative to the surface on which the model sits. Rotate the model 90 degrees about its mainshaft clockwise or counterclockwise. The swashplate should remain tilted in the same direction relative to the surface on which the model sits. Adjust Equa.Dir from NORMAL to REVERSE if needed to keep the swashplate tilt in the same direction as the model is rotated. Correctly setting of the rotational equalizer is critical for proper flight performance during pir- ouettes. All linkages from servos to swashplate should be installed prior to setting direction.	Off	(Rudder Expert) F/F mixing [default:off] Feed Forward mixing is activated with this parameter. F mixing is a pitch to rudder mix applied outside of the gy compensation's control loop and before the gyro itself ca even sense undesired tail rotor movement. F/F mixing handled within the CGY750. Do not attempt to use revol tion or acceleration mixing within your transmitter as th will actually adjust the input signal to the gyro and cau drifting.
		Ntr.Obsr ON	(Rudder Expert) Neutral compensation [default: on]
ROT.Trak +0.0 %	(Swash Detail) Rotational tracking [default: 0%] This function tunes the rotational equalizer to the pirouette characteristics of the model. When pirouetting the model at the desired rate, observe the model's rotor DISK (NOT the mechanics) and tune the ROT.Trak until the disk stays flat during the pirouette. Find the best average setting for both left and right pirouettes		This function works to recall the neutral point of the rudd servo for improving tail stop motion. To use this function effectively, hover the helicopter for about one second, ar memorize the neutral point. If flying a 3D helicopter, the function may not work as well due to the quick and aggres sive movements, so test with it turned on and off and d cide which yields better stop behavior. Use the data [+] or key to enable or disable this option.
rk.Mode CMT	(Flight Tuning) Gyro working mode [default: CMT]		
	The available choices are CMT, Normal or AVCS. The CMT mode will allow you to select either AVCS or Normal mode via the transmitter. In Normal mode the gyro will always operate in Normal Rate Mode, and when AVCS it will always operate in AVCS Mode. Use the data [+] or [-] key to select the desired working mode.	Yaw.Smth ON	(Rudder Expert) Yaw smoother [default: on] This function selects the rudder control feeling. Whe turned on, rudder control becomes more exact. Whe turned off, rudder control authority increases. Select the rudder control feeling to your taste. Use the data [+] or key to enable or disable this function.
tab.Gn 1- 5-	(Flight Tuning) Stability gain setting [default: 5 rang- es: 1~10]	GY Gain	
	Depending on many variables such as model, rotor blade design, head speed, head dampening, and servo choice,	A: 100 %	(Governor Expert) Gyro basic gain [default: 100% [ranges: 50% ~ 120%] This parameter sets the base gain of the gyro. This c
	the amount of transmitter cyclic gyro gain that the model will tolerate without oscillation may be lower than the per- centage that provides the most stable flight. If the model		be used to adjust the gain % if your actual transmitter ga does not match the gain on the CGY750 correctly.
	is observed to be oscillating or wobbling at your chosen headspeed with low transmitter cyclic gyro gain percent- ages, lowering the Stability.Gn parameter a point or two will allow for higher cyclic gyro gain without inducing a wobble	RUD.Ntr +0 uS	(Rudder Expert) Rudder servo neutral setting [default. μ S] [ranges: -140 μ S ~+140 μ S]
_T.Mode 3D	(Rudder Basic) Flight mode [default: 3D]		This parameter is used to set the neutral position of t rudder servo. Position the rudder servo arm as perpe- dicular as possible to tail rotor pushrod prior to making a justments with this parameter. Press the data [+] or [-] k to make adjustments.
	Selects the flight mode. Always try the "Sports" flight mode first and if you determine that the feel is not aggressive enough or if the pirouette rate is not fast enough then try the "3D" flight mode. The "Sports" Flight Mode will satisfy most pilots. The flight mode is changed by pushing the data	EXP. AVC -20 %	(Rudder Expert) Rudder exponential [default:-20% (3 AVCS), -20% (3D-Normal), -60% (Sports-AVCS -40% (Sports-Normal)] [ranges: -100% ~ +100%]
	[+] or [-] key.		This parameter sets the feel of the tail rotor control arou
esponse 1iddle	(Governor Basic) Response [default: Middle] This parameter selects the governor operation response. Select the best match for your engine type. Pushing data+ or – key, the mode is changed. Recommended selection		center. Decreasing the number (less negative) will res in a quicker feel off center and increasing the number of result in a softer feel. Adjust to suit your preference. T RUD EXP functions within your transmitter can also used to make this adjustment.
	are, Middle \rightarrow glow engine, Moderate \rightarrow gasoline engine, Quick \rightarrow brushless motor, Silent \rightarrow electric models when RPM detection is accomplished either with a magnet on the motor's rotor or with a brushless phase sensor.	Dly.Mode Function	(Rudder Expert) Rudder delay mode[default: Function Select [Function] for a softer control feel and [Constant] a linear and aggressive feel.

(Rudder Expert) Stop delay [default: 120%] [ranges: 100% ~ 400%]

This parameter may also be used to adjust the aggressiveness of the stop but is individually NOT tuneable for LEFT versus RIGHT tail rotor commands. Larger values will soften the tail stops resulting in less bounce. Use the data [+] or [-] key to adjust the value.

(Rudder Expert) Gain change up delay [default: 12] [ranges: 1 ~ 50]

This parameter sets the delay of change of the gyro gain from low to high when switching from idle up to hover and helps avoid the chance for tail rotor hunting during this switch. Use the data [+] or [-] key to adjust the value.

(Rudder Expert) Gain change down delay [default: 3] [ranges: 1 ~ 50]

This sets the delay of the gyro gain from high to low as would occur during a switch from hover into idle up and helps prevent the tail from feeling "loose" while the head speed accelerates to the higher rate. Use the data [+] or [-] key to adjust the value.

(Rudder Expert) Rudder histeresis [default: 7 μ S] [rang-es: 0 μ S ~ 50 μ S]

Hysteresis adjusts the range right around center of tail rotor stick travel within which a tail rotor input will result in no rudder servo movement. The greater the value, the wider the range where stick movement yields no servo movement. Use the data [+] or [-] key to adjust the value.

(AIL Expert) Aileron compensation [default: 0%] [ranges: 0%~ 100%]

This function sets the mixing rate of the pitch to aileron mixing. The roll axis may be affected by positive/negative collective pitch movement as manifested by the model rolling off either to the left or to the right during rapid ascent or descent. This mixing compensates this effect. The mixing amount can be adjusted individually for both positive and negative collective pitch inputs.

(AIL Expert) Roll compensation [default: 0%] [ranges: 0%~ 100%]

This parameter sets the mixing rate of the aileron to elevator mixing. The elevator axis may be affected by the aileron input as manifested by a tendency for the model to corkscrew or otherwise roll non-axially. This mixing compensates this effect. The mixing amount can be adjusted individually for both left and right aileron inputs.

(ELE Expert) Flip compensation [default: 0%] [ranges: 0%~ 100%]

This parameter sets the mixing rate of the elevator to aileron mixing. The roll axis may be affected by a pitch axis (elevator) input as manifested by the model rolling off to the left or right during flips or loops. This mixing compensates this effect. The mixing amount can be adjusted individually for both up and down elevator stick inputs. (AIL,ELE Expert) I gain <integral gain> [default: AIL 80% ELE 80%] [ranges: 0% ~ 200%]

I gain tunes the ability of the model to maintain a given heading. Inadequate I gain results in a change in model heading especially with aggressive collective pitch input. Excessive I gain can result in oscillations in forward flight or with cyclic input. On the ELE axis especially, excessive I gain can create bounce.

I.GainAI C1 80 %

I.GainEL

(AIL,ELE Expert) D gain <differential gain> [default: AIL 0% ELE 80%] [ranges: 0% ~ 250%]

D gain is best used to tune the stops following cyclic commands. Inadequate D gain results in soft, indeterminate stops possibly with a slow bounce. Excessive D gain causes harsh stops with a quick bounce or oscillation in forward flight or with cyclic input.

©Copyright 2013. No part of this manual may be reproduced in any form without prior permission. The contents of this manual are subject to change without prior notice. While this manual has been carefully written, there may be inadvertent errors or omissions. Please contact our service center if you feel that any corrections or clarifications should be made. FUTABA CORPORATION Phone: +81 475 32 6982, Facsimile: +81 475 32 6983

1080 Yabutsuka, Chosei-mura, Chosei-gun, Chiba 299-4395, Japan