Specifications

Displacement: 55.6 cc [3.4 cu. in.]
Performance: 5.5 HP / 7,500 rpm
Idle Speed: 1,350 rpm
Ignition Style: Electronic Ignition
Recommended Propellers: 22×8, 22×10, 23×8, 23×10
Sparkplug Type: CM6
(Gap) 0.018 in.–0.020 in. [0.45 mm – 0.51 mm]
Diameter × Stroke: 1.77 in. [45 mm] × 1.38 in. [35 mm]
Compression Ratio: 7.6:1
Carburetor: Walbro with Manual Choke
Weight:
- Main Engine – 2.88 lb [1310 g]
- Muffler – 3.5 oz [100 g]
- Electronic Ignition – 4.2 oz [120 g]
- Engine Mount Standoffs – 3.9 oz [110 g]
Fuel: 87–93 Octane Gasoline with a 30:1 gas/2-stroke (2-cycle) oil mixture
Parts List

(1) DLE-55cc Gas Engine w/carb
(1) CM6 Spark Plug with spare ignition wire spring
(1) Muffler w/gasket
(2) 5x20mm SHCS (muffler mounting)
(1) Electronic Ignition Module w/ additional tachometer lead
(4) Engine Mounting Standoffs
(4) 5x20mm SHCS with 5mm washers (mounting engine to standoffs)
(4) 5x40mm SHCS with 5mm lock washers & flat washers (propeller mounting)
(1) Silicone Pick-up Wire Cover / Ignition Wire Cover
(1) Throttle Arm Extension
(1) Red Three Pin Connector Lead w/ Pig Tail (ignition switch)
(2) Three Pin Connector Securing Clips
(3) DLE Decals

Safety Tips and Warnings

- This engine is not a toy. Please place your safety and the safety of others paramount while operating. DLE will not be held responsible for any safety issues or accidents involving this engine.

- Operate the engine in a properly ventilated area.

- Before starting the engine, please make sure all components including the propeller and the engine mount are secure and tight. It is strongly recommended that a screw sealant is used (Great Planes® Threadlocker GPMR6060) during engine installation.

- During the break-in period, it is recommended that the engine be installed on the aircraft or a test stand with an appropriate shock absorber. Otherwise it is probable that vibration could rebound.
back to the engine and serious damages may occur during the break-in period.

- For your safety and the safety of others, please do not stand in front of or in line with the propeller when the engine is running. Keep onlookers away from the running engine, especially small children.

- Always use a balanced spinner and a balanced propeller. An unbalanced spinner and propeller combination will cause high levels of vibration and may cause the propeller shaft to break. Always use a lightweight spinner on your engine. Lightweight spinners are considered to be those with a cone wall of 1mm or less. Heavy spinners could cause the propeller shaft to break. Securely tighten the spinner and propeller on the engine to prevent it from being thrown off the engine while running.

- Never use a propeller that has hit the ground. Even though it may look good from the outside, it may be cracked on the inside which may cause it to disintegrate while in use. Do not use a nicked, cracked or split propeller.

- Keep foreign objects away from the propeller. Make sure that nothing can be “sucked in” by the propeller.

- Never start the engine on loose gravel or sand.

- Do not attempt to stop the engine by throwing anything into the path of the propeller.

- Make sure the fuel line is well-secured to the engine and to the fuel tank so that it won’t come off in flight.

- Do not use silicone fuel line because it will be dissolved by the fuel. Use gasoline approved vinyl or neoprene rubber fuel line. Always secure the fuel line away from the cylinder head. The engine’s heat can damage the fuel line.

- Never touch the engine immediately after a run. The engine will be hot.

- Before transporting your model, remove all the fuel from the fuel tank and fuel lines.

- Always use high-quality oil intended for 2-stroke (2-cycle) engines. A high quality synthetic 2-cycle oil is recommended for optimum performance and a longer engine life. Synthetic 2-cycle oils leave fewer combustion byproducts than natural oil which can foul the engine and exhaust ports, resulting in reduced performance. Synthetic oils also better reduce friction and provide more fluidity at low temperatures.

- Do not install your throttle servo or kill switch servo inside the engine compartment. Doing so could cause radio interference.
Install all electronic radio devices at least 305mm [12"] away from the engine.

- The throttle and choke pushrods should be non-metallic.

- In case the engine is not to be used for more than a month, drain the fuel tank and remove any fuel from inside the carburetor. Do this by running the engine at idle until it quits by running out of fuel. Keeping gasoline inside the carburetor over an extended period of time will damage the diaphragm valve and clog passages inside the carburetor. Because the carburetor is more complicated than those used in glow engines, keep the fuel clean by using a fuel filter. Use a filter intended to be used with gasoline engines. Metal filters intended for glow engines are too coarse and will not screen out finer particles.

- Always filter your fuel by using an appropriate filter before putting it into the airplane’s fuel tank.

- Gasoline is extremely flammable. Keep it away from an open flame, excessive heat or sources of sparks.

- Do not smoke near the engine or the fuel tank.

- This engine was designed for use in a model aircraft. Do not attempt to use it for any other purpose.

- Always install an ignition system kill switch on the aircraft used.

- **Caution:** Running the engine with a lean gas mixture will cause the engine to overheat and burn the electrode of the spark plug. Pay close attention to the High-Speed Needle adjustment. Running the engine with the proper gas mixture will make the spark plugs appear yellow at the ignition point.

- For optimum performance please use fresh or recently purchased 87–93 octane gasoline with a 30:1 gas/oil 2-stroke (2-cycle) mixture.

GAS/OIL Mixing Chart

1 Gallon Gasoline (128 fl oz/3.78L) / 2-Cycle Oil (4.26fl oz/125.68ml) = 30:1 ratio

- Excessive running of the engine at idle speed can result in a seriously carbonized spark plug.

- Keep the surface of the engine clean to ensure proper heat dissipation.

- To avoid permanent damage to the electronic ignition system, NEVER rotate the propeller on your DLE engine with the electronic ignition system switched on and the plug not installed in the plug cap.
Installation Instructions

Prepare the engine for installation

1. Check to see that all screws and bolts are tight. Check carefully for any cracks, broken, or missing parts. Tighten or replace any damaged or missing parts before proceeding.

2. Test fit the muffler and muffler gasket. Use two 5 × 20mm SHCS and washers to hold it in place.

3. Install the silicone wire cover over the pick up lead coming from the motor (cut the excess silicone wire cover) and connect the lead to the pick-up lead from the Electronic Ignition Module. Secure the connection with the included three pin connector securing clip.
4. Connect the kill switch lead to the red connector from the electronic ignition system using the lead from the kill switch or with the included three pin connector with pig tail. Use one of the included three pin securing clips to secure the connection.

5. Connect the ignition module battery to the kill switch. Any 4.8-6.0V, 1000 mAh and above capacity battery will work well for this. Use heat shrink tubing to secure this connection.

6. Install the remaining silicone wire cover over the ignition wire.

7. Install the spark plug into the engine head (7–8 lbs torque).
Installing the DLE-55 on Your Airplane

Note: The DLE-55 must be installed on at least a 9.5mm [3/8"] thick 5-ply plywood firewall. The firewall must be securely glued to the airplane. Use triangle stock and pin the firewall with hardwood dowels to reinforce the firewall glue joints. Never install the DLE-55 onto a firewall thinner than specified because it may fail due to the power of the engine.

Note: The length of the engine from the back of the engine mount stand offs to the propeller drive washer is 168 mm [6-5/8”].

1. Use the supplied template (on the back cover of this manual) to drill the engine mounting bolt holes.
2. Install the standoffs to the firewall using (4) 5x20mm SHCS with 5mm lock washers and 5mm washers (not included) from the back side and through the firewall into the standoffs. Use some threadlocking compound, such as Great Planes® Pro™ Threadlocker (GPMR6060), on the screws. Next install the DLE-55 to the standoffs using the included (4) 5x20mm SHCS with 5mm washers. Be sure to also use threadlocker when mounting the engine to the standoffs.

3. Install the fuel tank in the airframe. Use only gasoline-safe fuel lines and a gasoline safe fuel tank stopper. One line should go to the carburetor and the other is to be used as a vent (a vent line is simply an open ended fuel line from the fuel tank which exits the engine compartment or the fuselage; most vent lines exit at the bottom of the firewall). You can fill the tank by using the carburetor line as fill line if you have access to it or install a third line to be used as fill line. Installing a third line is the cleanest and easiest way to add fuel. An alternative fueling set up is a 2-line system with a T-fitting approved for gasoline use. Be sure to use a filler plug with either a 2 line or 3 line set-up.

4. Install the kill switch on the aircraft so that it is easily accessible from outside the plane.

5. Install the throttle servo at least 305mm [12"] away from the engine. Make sure that you get the carburetor’s full range of rotation with your servo travel. Be sure to use a non-metallic linkage.
6. Install the choke servo (optional) at least 305mm [12"] away from the engine. Be sure to use a non-metallic linkage.

7. Install the ignition module securely in the airplane forward area. It is recommended that a thin piece of foam rubber is placed between the module and the mounting surface and that Velcro™ is used to hold the module in place.

8. Secure any unsecure connection with heat shrink tubing. (Not included.)
9. Connect the ignition wire from ignition module to the spark plug.
10. Install the muffler onto the engine. Be sure to use threadlocker.
11. Cut all necessary clearance, carburetor adjustment, cooling, and exhaust holes in the cowl.
12. Make sure the cowl is secured to the airplane and that the spinner to cowl clearance is at least 3.2mm [1/8”].

Drill and Install the Propeller

The easiest way to drill the propeller to fit the hub is to use a drill guide. If you do not have a drill guide, you can use the following method to drill your propellers.

1. Remove the cowling from the aircraft. Use the included propeller washer to mark the centering hole in the propeller.
2. Once the location is established, use a drill press with a #5 (.2055” /5.21mm) drill bit as a pilot hole. Once the pilot hole is established, use a 13/32” (.406/10.31mm) drill bit to finish the hole. In order to achieve a clean opening on both sides of the propeller, drill only half way through the propeller with the finishing drill bit. Then flip the propeller over and drill completely through the hole.
3. Next, set the engine at the beginning of the compression stroke. Note the position of the ignition magnet with engine inverted.

4. Place the propeller on the crankshaft at the 1 o’clock position.
5. Mark the location of one of the outer holes while the propeller is in the top of the compression stroke position. Use a Dead Center Hole Locator (GPMR8130) to center and start the hole.

6. Remove the propeller from the engine and drill the outer hole on the drill press using a #35 drill bit as a pilot hole. Next use a #5 (.2055” /5.21mm) drill bit to finish the hole. In order to achieve a clean opening on both sides of the propeller, drill only half way through the propeller with the finishing drill bit. Then flip the propeller over and drill completely through the hole.

7. Use one of the 5x40mm SHCS with 5mm lock washers and 5mm flat washers to align the propeller washer on the propeller and use the Dead Center Hole Locator to mark position of the remaining holes.

8. Drill the remaining three holes in the propeller. In order to achieve a clean opening on both sides of the propeller, drill only half way through the propeller with the finishing drill bit. Then flip the propeller over and drill completely through the hole.

9. Mount the propeller to the engine using the 5x40mm SHCS with 5mm lock washers and flat washers. Be sure to use threadlocker.
Adjustment of the Engine

Each DLE Engine has been factory preset. However, elevation changes will influence the performance of the carburetor. To obtain optimum output of the engine, slight adjustment of the carburetor maybe necessary.

Engine Functions and Adjustments

1. **Choke Control**
 (the choke should be used when the engine is cold)

2. **Throttle Stop**

3. **Idle Adjustment Screw**
 (adjust the idle speed)

4. **(L) Low-Speed Needle**
 (adjusts the fuel/air mixture at low speeds)

5. **(H) High-Speed Needle**
 (adjusts the fuel/air mixture at high speeds)

Idle Adjustment

Turning the Idle Adjustment Screw (No.3) clockwise will increase the idle speed. Turning the Idle Screw counter-clockwise will decrease the idle speed.

Low Speed Needle Adjustment

Turning the Low-Speed Needle (No.4) clockwise will lean the fuel/air mixture at low speeds. Turning the Low-Speed Needle (No.4) counter-clockwise will richen the fuel/air mixture at low speeds. (The default or factory setting of the Low-Speed Needle is as follows; turn the needle to the fully stop/closed position and then open the needle 1.25 turns.)
High Speed Needle Adjustment

Turning the High-Speed Needle (No.5) clockwise will lean the fuel/air mixture at high speeds. Turning the High-Speed Needle (No.5) counter-clockwise will richen the fuel/air mixture at high speeds. (The default or factory setting of the High-Speed Needle is as follows; turn the needle to the fully stop/closed position and then open the needle 1.5 turns). It is recommended that the High-Speed Needle be adjusted by the use of a tachometer to obtain maximum speed.

Smooth acceleration and deceleration is an indicator of proper engine performance.

Ignition Timing Adjustment

The ignition timing is preset on the DLE-55 at 44° before Top Dead Center (TDC). The ignition timing can be advanced or retarded by loosening the (2) ignition sensor phillips head screws and sliding the sensor to the full extent clockwise (45° advancing the ignition) or counter clockwise (43° retarding the ignition). Be sure to retighten the Phillips head screws after adjusting the ignition timing.

Advancing the timing causes combustion to occur earlier resulting in higher performance of the engine. However, advancing the timing also causes higher engine temperatures and can cause premature wear of internal engine components.

Carburetor Adjustment Troubleshooting

Problem
1. The engine hesitates when accelerated rapidly.
2. The rpm increases at idling.
3. The engine stops when the throttle is moved from high to low.

Solution
The low-speed needle “L” is too lean. Open it about 1/8 of a turn and try again.

Problem
The idle is not steady.

Solution
The low-speed needle “L” valve is too rich. Close it 1/8 of a turn and try again.
Problem
1. Engine stops at full throttle.
2. Engine hesitates when accelerated rapidly.
3. The engine will not come up to full rpm at full throttle.

Solution
The high-speed needle valve “H” is too lean. Open it 1/8 of a turn and try again.

Problem
1. The engine does not reach full rpm.
2. Carbon build-ups appear consistently on your spark plug.

Solution
The high-speed needle valve “H” is too rich. Close it 1/8 turn and try again.

Starting Procedures
If starting the engine the first time and during break-in it’s recommended that you run the engine without the cowling. Also, for safety reasons do not make adjustments to the carburetor while the engine is running.

There are two recommended ways to start the DLE-55:

A. Manual Starting

Note: When hand starting the DLE-55, use a thick glove or a heavy duty starter stick to protect your hand.

1. The propeller should be installed on the drive washer at the 1 o’clock position and at the beginning of the compression stroke so that it’s comfortable to flip it through compression.

2. Have someone help you hold the airplane while you start the engine.

3. Make sure the ignition is OFF, close the choke on the carburetor and open the throttle slightly from the idle position.

4. Rotate the propeller slowly about 4 to 8 times (more in cold temperatures) until fuel begins to be drawn into the carburetor. Another way to prime the engine is to rotate the propeller clockwise from bottom dead center to top dead center (compression) and then counterclockwise back to bottom dead center repeatedly.
5. Switch the ignition to ON.

6. Flip the propeller counterclockwise several times briskly, until a popping sound is heard. This indicates the engine is firing.

7. Move the choke lever to the OPEN position.

8. Set the throttle to a high idle. Set the propeller so that it is at the beginning of the compression stroke. (1 o’clock position)

9. Flip the propeller through compression rapidly. If this is done properly, the engine will start in just a few flips of the propeller.

10. After starting, let the engine idle for 30 to 45 seconds. Open and close the throttle slowly until the engine runs smoothly at idle and at full throttle. Acceleration should also be smooth. If acceleration is not smooth, adjustments to the carburetor may be necessary. (See Adjustment of the Engine on page 13.)

11. If your engine does not start, repeat steps 1 through 10.

B. Electric Starter Starting

A 24V electric starter is recommended to start the DLE-55.

1. Make sure you use a good quality, lightweight aluminum spinner.

2. Have someone help you hold the airplane while you start it.

3. Make sure the ignition is OFF, close the choke plate on the carburetor and open the throttle slightly from the idle position.

4. Use your electric starter to turn the engine over for several seconds.

5. Switch the ignition to ON and open the choke.

6. Set the throttle to high idle and use your electric starter to turn over the engine until it starts.

7. After starting, let the engine idle for 30 to 45 seconds. Open and close the throttle slowly until the engine runs smoothly at idle and at full throttle. Acceleration should also be smooth. If acceleration is not smooth, adjustments to the carburetor may be necessary. (See Adjustment of the Engine on page 13.)

8. If your engine does not start, repeat steps 1 through 7.
Engine Troubleshooting

If your engine fails to start after the preceding starting procedures please check the following.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Diagnosis</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine does not fire</td>
<td>Ignition battery low</td>
<td>Charge or replace battery</td>
</tr>
<tr>
<td></td>
<td>Battery wires faulty</td>
<td>Replace wires or Re-connect/check connections</td>
</tr>
<tr>
<td></td>
<td>Faulty spark plug or not firing</td>
<td>Replace spark plug or check for spark *</td>
</tr>
<tr>
<td></td>
<td>Engine flooded</td>
<td>Remove plug, rotate prop to remove fuel</td>
</tr>
<tr>
<td>Engine starts, then rpm increases till engine cuts out</td>
<td>Fuel not reaching engine</td>
<td>Check for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) fuel in tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) fuel tubing cut, blocked, or kinked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) carburetor clogged</td>
</tr>
</tbody>
</table>

* This can be done by removing the spark plug from head of the engine and contacting the plug on the outside of the crank case. Have an assistant turn the engine over while checking this and be sure to have the spark plug firmly plugged into the ignition wire. Warning the high voltage from the ignition can cause bodily harm, especially when checking for spark in this manner.
Optional Mini Tachometer

An optional mini tachometer is available that can be directly connected to the ignition and display the RPMs of the engine. This unit can be installed on the aircraft or used to spot check the Engine RPMs. Do not install or uninstall the Digital Tachometer while the engine is running.

Many of the DLE Ignition modules have an addition lead to plug into the optional tachometer. If your ignition module does not have this additional lead, the digital tachometer can still be used. Simply used the included Y-harness (included with the Digital Tachometer) to connect to the pick-up lead from the engine. Be sure to secure all connections and to secure the Digital Tachometer or leads on the aircraft used.

Engine Maintenance

Please clean the fuel filter in the Walbro Carburetor periodically. Failure to do so may result in mis-calibration of the needle adjustments. In order to do this it is necessary to remove the phillips head screw which secures the carb filter cover and the carb filter gasket. Use only carburetor cleaner to clean the opening around the filter.
Warranty Information

The DLE-55 has a two year limited warranty through Hobby Services beginning at date of purchase.

Contact Us

Hobby Services
3002 N. Apollo Drive Suite #1 Ph: 217-398-0007
Champaign, Il 61822 Fax: 217-398-7721

E-mail: hobbyservices@hobbico.com
Web address: www.hobbyservices.com
Replacement Parts

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Key No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLEG5501</td>
<td>1</td>
<td>Cylinder Head</td>
</tr>
<tr>
<td>DLEG5502</td>
<td>2</td>
<td>Crankshaft w/Connecting Rod,</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Spacer</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Woodruff Key</td>
</tr>
<tr>
<td>DLEG5503</td>
<td>3</td>
<td>Crankcase</td>
</tr>
<tr>
<td>DLEG5504</td>
<td>4</td>
<td>Piston</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Piston Pin</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Piston Retainer Clips (2)</td>
</tr>
<tr>
<td>DLEG5505</td>
<td>5</td>
<td>Piston Ring</td>
</tr>
<tr>
<td>DLEG5506</td>
<td>6</td>
<td>Electronic Ignition Module</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Ignition Sensor</td>
</tr>
<tr>
<td>DLEG5507</td>
<td>7</td>
<td>Muffler</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Muffler Gasket w/(2) 5x20mm Muffler Mounting Screws</td>
</tr>
<tr>
<td>DLEG5508</td>
<td>8</td>
<td>Carburetor Complete</td>
</tr>
<tr>
<td>DLEG5509</td>
<td>9</td>
<td>Engine Mounting Standoffs w/(4) 5x20mm Engine Mounting Screws and (4) 5mm Washers</td>
</tr>
<tr>
<td>DLEG5510</td>
<td>10</td>
<td>Spark Plug #CM6</td>
</tr>
<tr>
<td>DLEG5511</td>
<td>11</td>
<td>Reed Valve</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Reed Valve Spacer</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Vacuum Tube</td>
</tr>
<tr>
<td>DLEG5512</td>
<td>12</td>
<td>Front Crankshaft Bearings</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Rear Crankshaft Bearings</td>
</tr>
<tr>
<td>DLEG5515</td>
<td>15</td>
<td>Complete Screw and Washer Set</td>
</tr>
<tr>
<td>DLEG5516</td>
<td>16</td>
<td>Propeller Hub</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Crank Shaft Extension</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Propeller Flange</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Woodruff Key</td>
</tr>
<tr>
<td>DLEG5514</td>
<td>17</td>
<td>Carburetor Gasket</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Reed Valve Spacer Gaskets (2)</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Muffler Gasket</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Head Gasket</td>
</tr>
<tr>
<td>DLEG1113</td>
<td>29</td>
<td>Ignition Sensor w/Phillips Head Mounting Screws</td>
</tr>
<tr>
<td>DLEG5517</td>
<td>26</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td>DLEG5518</td>
<td>30</td>
<td>Woodruff Key</td>
</tr>
</tbody>
</table>

Optional Parts

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLEG5525</td>
<td>Onboard Digital Tachometer</td>
</tr>
</tbody>
</table>
DLE 55 Mounting Pattern

3.15 in. [80 mm]

2.64 in. [67 mm]